SAFETY MESSAGES

Your safety and the safety of others is very important. We have provided many important safety messages in this manual. Please read these messages carefully.

A safety message alerts you to potential hazards that could hurt you or others. Each safety message is associated with a safety alert symbol. These symbols are found in the manual and inside the instrument. The definition of these symbols is described below:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>GENERAL SAFETY HAZARD: Refer to the instructions for details on the specific hazard.</td>
</tr>
<tr>
<td>🎥</td>
<td>CAUTION: Hot Surface Warning</td>
</tr>
<tr>
<td>⚡</td>
<td>CAUTION: Electrical Shock Hazard</td>
</tr>
<tr>
<td>🔨</td>
<td>TECHNICIAN SYMBOL: All operations marked with this symbol are to be performed by qualified maintenance personnel only.</td>
</tr>
</tbody>
</table>

CAUTION

The analyzer should only be used for the purpose and in the manner described in this manual. If you use the analyzer in a manner other than that for which it was intended, unpredictable behavior could ensue with possible hazardous consequences.

NOTE

Technical Assistance regarding the use and maintenance of the Model 6200E UV Fluorescence H₂S Analyzer or any other Teledyne Analytical Instruments product can be obtained by:

Contacting Teledyne Analytical Instruments’ Customer Service Department at 800-324-5190

or

Via the internet at http://www.teledyne-ai.com
TABLE OF CONTENTS

1. M6200E DOCUMENTATION .. 13
 1.1. Using This Manual ... 13

2. SPECIFICATIONS, APPROVALS AND WARRANTY .. 17
 2.1. Specifications .. 17
 2.2. EPA Equivalency Designation ... 18
 2.3. CE Mark Compliance ... 19
 2.3.1. Emissions Compliance .. 19
 2.3.2. Safety Compliance ... 19
 2.4. Warranty ... 19

3. GETTING STARTED .. 21
 3.1. Unpacking and Initial Setup ... 21
 3.1.1. Electrical Connections: .. 23
 3.1.1.1. Connecting the Analog Outputs ... 24
 3.1.1.2. Connecting the Status Outputs .. 24
 3.1.1.3. Connecting the Control Inputs .. 26
 3.1.1.4. Connecting the Serial Ports ... 27
 3.1.1.5. Connecting to a LAN or the Internet ... 27
 3.1.1.6. Connecting to a LAN or the Internet ... 27
 3.1.2. Pneumatic Connections: .. 30
 3.1.2.1. Connections with Internal Valve Options Installed .. 30
 3.2. Initial Operation ... 32
 3.2.1. Startup .. 32
 3.2.2. Warm-Up .. 33
 3.2.3. Warning Messages ... 34
 3.2.4. Functional Check ... 36
 3.3. Initial Calibration ... 38
 3.3.1. Basic Calibration Procedure .. 38
 3.3.2. Interferences for H2S Measurements ... 38

4. FREQUENTLY ASKED QUESTIONS & GLOSSARY .. 41
 4.1. FAQ's ... 41
 4.2. Glossary ... 42

5. OPTIONAL HARDWARE AND SOFTWARE ... 45
 5.1. Rack Mount Kits (Options 20a, 20b & 21) ... 45
 5.2. Current Loop Analog Outputs (Option 41) .. 45
 5.3. Particulate Filter Kit (Option 42A) ... 46
 5.4. Calibration Valves Options .. 46
 5.4.1. Zero/Span Valves (Option 50)... 46
 5.4.2. Internal Zero/Span Gas Generator (Option 51) ... 48
 5.4.3. IZS Permeation Tubes (Options 53, 55 & 57) .. 51
 5.4.4. Zero Air Scrubber Maintenance Kit (Option 43) ... 51
 5.5. Multigas Measurement Option (option 82) ... 52
 5.6. Communication Options .. 52
 5.6.1. RS232 Modem Cable (Option 60) .. 52
 5.6.2. RS-232 Multidrop (Option 62) .. 52
 5.6.3. Ethernet (Option 63) .. 53
 5.7. Additional Manuals ... 55
 5.7.1. Printed Manuals (Option 70) ... 55
 5.7.2. Manual on CD (Part number 047400200) .. 55
 5.8. Extended Warranty (Options 92 & 93) .. 56
 5.9. Special Software Features ... 56
 5.9.1. Maintenance Mode Switch ... 56
 5.9.2. Second Language Switch .. 56
 5.9.3. Dilution Ratio Option ... 56

6. OPERATING INSTRUCTIONS .. 59
 6.1. Overview of Operating modes ... 59
 6.2. Sample Mode .. 60
 6.2.1. Test Functions ... 60
 6.2.2. Warning Messages ... 63

M6200E Rev: A1 3
4.11.1.1. iDAS Structure...120
4.11.1.2. iDAS Channels.. 120
4.11.1.3. iDAS Parameters...121
4.11.1.4. iDAS Triggering Events... 122
4.11.2. Default iDAS Channels ... 122
4.11.2.1. Viewing iDAS Data and Settings .. 125
4.11.2.2. Editing iDAS Data Channels .. 126
4.11.2.3. Trigger Events ...128
4.11.2.4. Editing iDAS Parameters ...128
4.11.2.5. Sample Period and Report Period .. 130
4.11.2.6. Number of Records .. 132
4.11.2.7. RS-232 Report Function ...134
6.10.6. Ethernet Card Communication .. 106
6.10.6.1. Ethernet Card COM2 Communication Modes and Baud Rate.............................. 107
6.10.6.2. Configuring the Ethernet Interface Option using DHCP .. 107
6.10.6.3. Manually Configuring the Network IP Addresses ..110
6.10.6.4. Changing the Analyzer's HOSTNAME ..112
6.10.7. Multidrop RS-232 Set Up ... 113
6.10.8. COM Port Communication Modes ... 116
6.10.9. COM Port Baud Rate ... 118
6.10.10. COM Port Testing ...119
6.11.1. Using the Data Acquisition System (iDAS) ...119
6.11.1.1. iDAS Structure ... 120
6.11.1.2. iDAS Channels.. 120
6.11.1.3. iDAS Parameters...121
6.11.1.4. iDAS Triggering Events... 122
6.11.2. Default iDAS Channels ... 122
6.11.2.1. Viewing iDAS Data and Settings .. 125
6.11.2.2. Editing iDAS Data Channels .. 126
6.11.2.3. Trigger Events ...128
6.11.2.4. Editing iDAS Parameters ...128
6.11.2.5. Sample Period and Report Period .. 130
6.11.2.6. Number of Records .. 132
7. CALIBRATION PROCEDURES

7.1. Calibration Preparations
- Zero Air
- Gas Standards

7.2. Manual Calibration
- Data Recording Devices
- Manual Calibration with Zero/Span Valves
- Manual Calibration with IZS Option

7.3. Additional Calibrations
- Using the M6200E with a Hessen Protocol Network

7.4. Testing Operation of the Analyzer
- Remote Operation Using the External Digital I/O

7.5. Calibration Checks
- Level 1 Calibrations versus Level 2 Checks
- Level 1 Calibrations versus Level 2 Checks

7.6. Manual Calibration Checks in Multigas Measurement Mode
- Autocal of instruments in Multigas Measurement Mode

7.7. Gas Standards
- Permeation Tubes
- Calibration Gas Traceability

7.8. Data Recording Devices
- Command Syntax
- APICOM Remote Control Program

7.9. Data Recording Devices
- Data Recording Devices
- Remote Access by Modem

7.10. Data Recording Devices
- Data Recording Devices
- Remote Access by Modem

7.11. Data Recording Devices
- Data Recording Devices
- Remote Access by Modem
9. INSTRUMENT MAINTENANCE ... 189
 9.1. Maintenance Schedule ... 189
 9.2. Predictive Diagnostics ... 192
 9.3. Maintenance Procedures ... 193
 9.3.1. Changing the Sample Particulate Filter 193
 9.3.2. Changing the IZS Permeation Tube 194
 9.3.3. Maintaining the SO₂ Scrubber .. 194
 9.3.3.1. Predicting When the SO₂ Scrubber Should Be Replaced 194
 9.3.3.2. Checking the Function of the SO₂ Scrubber 195
 9.3.3.3. Changing the SO₂ Scrubber Material 195
 9.3.4. Changing the External Zero Air Scrubber 196
 9.3.5. Maintaining the H₂S → SO₂ Converter 197
 9.3.5.1. Predicting When the Converter Catalyst Should Be Replaced 197
 9.3.5.2. Checking the Efficiency of the H₂S → SO₂ Converter 197
 9.3.5.3. Changing the H₂S → SO₂ Converter Catalyst Material ... 198
 9.3.6. Cleaning the Sample chamber ... 199
 9.3.7. Cleaning or Changing Critical Flow Orifices 200
 9.3.8. Checking for Light Leaks ... 201
 9.3.9. Checking the Efficiency of the H₂S → SO₂ Converter 202

10. THEORY OF OPERATION .. 203
 10.1. Measurement Principle .. 203
 10.1.1. H₂S Conversion .. 203
 10.1.2. SO₂ Ultraviolet Fluorescence ... 204
 10.2. The UV Light Path ... 206
 10.2.1. UV Source Lamp .. 206
 10.2.2. The Reference Detector ... 208
 10.2.3. The PMT ... 208
 10.2.4. Optical Filters ... 208
 10.2.4.1. UV Source Optical Filter ... 208
 10.2.4.2. PMT Optical Filter .. 209
 10.2.5. Optical Lenses .. 210
 10.2.6. Measurement Interferences .. 210
 10.2.6.1. Direct Interference ... 211
 10.2.6.2. UV Absorption by Ozone 211
 10.2.6.3. Dilution .. 211
 10.2.6.4. Third Body Quenching ... 211
 10.2.6.5. Light Pollution .. 212
 10.3. Pneumatic Operation ... 212
 10.3.1. sample gas Flow .. 213
 10.3.2. Multigas Measurement & H₂S → SO₂ Switching Valve 213
 10.3.3. Flow Rate Control ... 214
 10.3.3.1. Critical Flow Orifice ... 214
 10.3.4. Sample Particulate Filter .. 215
 10.3.5. Hydrocarbon Scrubber (kicker) 215
 10.3.6. SO₂ Scrubber .. 216
 10.3.7. Pneumatic Sensors ... 216
 10.3.7.1. Sample Pressure Sensor ... 216
 10.3.7.2. Sample Flow Sensor ... 217
 10.4. Electronic Operation ... 218
 10.4.1. CPU ... 219
 10.4.1.1. Disk On Chip ... 220
 10.4.1.2. Flash Chip ... 220
 10.4.2. Sensor Module & Sample chamber 221
 10.4.3. Sample Chamber Heating Circuit 221
 10.4.4. Photo Multiplier Tube (PMT) .. 222
 10.4.5. PMT Cooling System .. 223
 10.4.5.1. Thermoelectric Cooler (TEC) 223
 10.4.5.2. TEC Control Board .. 224
 10.4.6. PMT Preamplifier .. 224
10. Troubleshooting & Repair

10.4.1. Pneumatic Sensor Board	226
10.4.8. Relay Board	226
10.4.8.1. Heater Control	226
10.4.8.2. Valve Control	226
10.4.9. Status LEDs & Watch Dog Circuitry	227
10.4.10. Motherboard	228
10.4.10.1. A to D Conversion	228
10.4.10.2. Sensor Inputs	228
10.4.10.3. Thermistor Interface	229
10.4.11. Analog Outputs	229
10.4.12. External Digital I/O	230
10.4.13. 1°C Data Bus	230
10.5. Power Supply/ Circuit Breaker	230
10.6. Communications Interface	231
10.6.1. Front Panel Interface	232
10.6.1.1. Analyzer Status LED’s	233
10.6.1.2. Keyboard	233
10.6.1.3. Display	233
10.6.1.4. Keyboard/Display Interface Electronics	234
10.6.1.5. Front Panel Interface	235
10.7. Software Operation	235
10.7.1. Adaptive Filter	236
10.7.2. Calibration - Slope and Offset	236
10.7.3. Temperature and Pressure Compensation (TPC) Feature	237
10.7.4. Internal Data Acquisition System (IDAS)	238

11. Troubleshooting & Repair

11.1. General Troubleshooting	239
11.1.1. Fault Diagnosis with Warning Messages	240
11.1.2. Fault Diagnosis with Test Functions	242
11.1.3. Using the Diagnostic Signal I/O Function	243
11.1.4. Status LEDs	244
11.1.4.1. Motherboard Status Indicator (Watchdog)	244
11.1.4.2. CPU Status Indicator	245
11.1.4.3. Relay Board Status LEDs	245
11.2. Gas Flow Problems	246
11.2.1. Zero or Low Sample Flow	247
11.2.2. High Flow	247
11.3. Calibration Problems	247
11.3.1. Negative Concentrations	247
11.3.2. No Response	248
11.3.3. Unstable Zero and Span	248
11.3.4. Inability to Span - No SPAN Key	248
11.3.5. Inability to Zero - No ZERO Key	249
11.3.6. Non-Linear Response	249
11.3.7. Discrepancy Between Analog Output and Display	250
11.4. Other Performance Problems	250
11.4.1. Excessive noise	250
11.4.2. Slow Response	250
11.4.3. The Analyzer Doesn’t Appear on the LAN or Internet	251
11.5. Subsystem Checkout	251
11.5.1. Detailed Pressure Leak Check	252
11.5.2. Performing a Sample Flow Check	252
11.5.3. AC Power Configuration	253
11.5.4. DC Power Supply	253
11.5.5. 1°C Bus	254
11.5.6. Keyboard / Display Interface	254
11.5.7. Relay Board	255
11.5.8. Motherboard	255
11.5.8.1. A/D functions	255
11.5.8.2. Analog Output Voltages	256
11.5.8.3. Status Outputs	256
11.5.8.4. Control Inputs	257
Model 6200E Instruction Manual

11.5.9. CPU .. 257
11.5.10. RS-232 Communication ... 257
11.5.10.1. General RS-232 Troubleshooting ... 257
11.5.10.2. Modem or Terminal Operation ... 258
11.5.11. PMT Sensor ... 258
11.5.12. PMT Preamplifier Board .. 259
11.5.13. PMT Temperature Control PCA ... 259
11.5.15. Pneumatic Sensor Assembly .. 260
11.5.15.1. Sample Pressure ... 260
11.5.16. IZS Option ... 260
11.5.17. Box Temperature .. 261
11.5.18. PMT Temperature ... 261
11.5.19. Repair Procedures ... 261
11.5.19.1. Disk-on-Chip Replacement .. 261
11.5.20. Flash Chip Replacement or Upgrade ... 262
11.5.21. Factory Cal (PMT Sensor, Hardware Calibration) ... 262
11.6. Repair Procedures .. 264
11.7. Technical Assistance .. 264

12. A PRIMER ON ELECTRO-STATIC DISCHARGE .. 265
12.1. How Static Charges are Created ... 265
12.2. How Electro-Static Charges Cause Damage ... 266
12.3. Common Myths About ESD Damage .. 267
12.4. Basic Principles of Static Control .. 268
12.4.1. General Rules ... 268
12.4.2. Basic anti-ESD Procedures for Analyzer Repair and Maintenance 270
12.4.2.1. Working at the Instrument Rack .. 270
12.4.2.2. Working at a Anti-ESD Work Bench ... 270
12.4.2.3. Transferring Components from Rack To Bench and Back 271
12.4.2.4. Opening Shipments from and Packing Components for Return to Teledyne Analytical Instruments Customer Service ... 272

LIST OF APPENDICES

APPENDIX A - VERSION SPECIFIC SOFTWARE DOCUMENTATION
APPENDIX A-1: M6200E Software Menu Trees, Revision A.1
APPENDIX A-2: Setup Variables For Serial I/O, Revision A.1
APPENDIX A-3: Warnings and Test Functions, Revision A.1
APPENDIX A-4: M6200E Signal I/O Definitions, Revision A.1
APPENDIX A-5: M6200E IDAS Functions, Revision A.1
APPENDIX A-6: Terminal Command Designators, Revision A.1

APPENDIX B - M6200E SPARE PARTS LIST

APPENDIX C - REPAIR QUESTIONNAIRE - M6200E

APPENDIX D - ELECTRONIC SCHEMATICS
LIST OF FIGURES

Figure 3-1: Location of Shipping Screws ...22
Figure 3-2: Rear Panel Layout ..23
Figure 3-3: Analog Output Connector ..24
Figure 3-4: Status Output Connector ..25
Figure 3-5: Control Input Connector ..26
Figure 3-6: Pneumatic Connections–Basic Configuration–Using Gas Dilution Calibrator ...28
Figure 3-7: Pneumatic Connections–Basic Configuration–Using Bottled Span Gas .. 28
Figure 3-8: Basic Pneumatic Connections for Units with Valve Options30
Figure 3-9: M6200E Layout (with IZS) ...31
Figure 3-10: Front Panel Layout ..34
Figure 3-11: Pneumatic Diagram of the M6200E Standard Configuration........................37
Figure 5-1: Current Loop Option Installed on the Motherboard46
Figure 5-2: Pneumatic Diagram of the M6200E With Z/S Option Installed47
Figure 5-3: Pneumatic Diagram of the M6200E with IZS Options Installed49
Figure 5-4: M6200E Multidrop Card ..53
Figure 5-5: M6200E Ethernet Card ..54
Figure 5-6: M6200E Rear Panel with Ethernet Installed ..54
Figure 6-1: Front Panel Display ..59
Figure 6-2: Viewing M6200E TEST Functions ..62
Figure 6-3: Viewing and Clearing M6200E WARNING Messages64
Figure 6-4: Analog Output Connector Key ...70
Figure 6-5: Setup for Calibrating Analog Outputs ..90
Figure 6-6: Setup for Calibrating Current Outputs ..92
Figure 6-7: Back Panel connector Pin-Outs for COM1 & COM2 in RS-232 mode103
Figure 6-8: CPU connector Pin-Outs for COM1 & COM2 in RS-232 mode104
Figure 6-9: CPU card Locations of RS-232/486 Switches, Connectors and Jumpers105
Figure 6-10: Back Panel connector Pin-Outs for COM2 in RS-485 mode106
Figure 6-11: CPU connector Pin-Outs for COM2 in RS-485 mode106
Figure 6-12: Location of JP2 on RS232-Multidrop PCA (option 62)113
Figure 6-13: RS232-Multidrop PCA Host/Analyzer Interconnect Diagram115
Figure 6-14: Default IDAS Channels Setup ...124
Figure 6-15: APICOM user interface for configuring the iDAS137
Figure 6-16: iDAS Configuration Through a Terminal Emulation Program138
Figure 6-17: Status Output Connector ..139
Figure 6-18: Control Inputs with local 5 V power supply ..141
Figure 6-19: Control Inputs with external 5 V power supply141
Figure 6-20: APICOM Remote Control Program Interface ...148
Figure 7-1: Setup for Manual Calibration without Z/S valve or IZS Option160
Figure 7-2: Setup for Manual Calibration with Z/S Valve Option Installed164
Figure 7-3: Setup for Manual Calibration Check with Z/S Valve or IZS Option169
Figure 7-4: Typical Setup for Manual Calibration of M6200E in Multigas Measurement Mode ...172
Figure 9-1: Sample Particulate Filter Assembly ..193
Figure 9-2: Zero Air Scrubber Assembly ...196
Figure 9-3: H2S → SO2 Converter Assembly ..199
Figure 9-4: Critical Flow Orifice Assembly ...201
Figure 10-1: UV Absorption ..205
Figure 10-2: UV Light Path ...207
Figure 10-3: Source UV Lamp Construction ..208
Figure 10-4: Excitation Lamp UV Spectrum Before/After Filtration209
Figure 10-5: PMT Optical Filter Bandwidth ..209
Figure 10-6: Effects of Focusing Source UV in Sample Chamber210
Figure 10-7: M6200E Gas Flow and Location of Critical Flow Orifice213
LIST OF TABLES

Table 2-1: Model 6200E Basic Unit Specifications ... 17
Table 3-1: Analog output Pin Outs .. 24
Table 3-2: Status Output Signals .. 25
Table 3-3: Control Input Signals ... 26
Table 3-4: Inlet / Outlet Connector Nomenclature ... 27
Table 3-5: NIST-SRM’s Available for Traceability of H2S & SO2 Calibration Gases 29
Table 3-6: Front Panel Display During System Warm-Up ... 34
Table 3-7: Possible Warning Messages at Start-Up ... 35
Table 3-8: H2S – SO2 Switching Valve Operating States ... 37
Table 5-1: Zero/Span Valve Operating States ... 48
Table 5-2: IZS Valve Operating States .. 49
Table 5-3: H2S – SO2 Switching Valve Operating States ... 52
Table 6-1: Analyzer Operating modes ... 60
Table 6-2: Test Functions Defined .. 61
Table 6-3: List of Warning Messages .. 63
Table 6-4: Primary Setup Mode Features and Functions .. 66
Table 6-5: Secondary Setup Mode Features and Functions ... 66
Table 6-6: Variable Names (VARS) Revision A.1 ... 78
Table 6-7: M6200E Diagnostic (DIA) Functions .. 81
Table 6-8: DIA - Analog I/O Functions ... 84
Table 6-9: Analog Output Voltage Ranges ... 84
Table 6-10: Analog Output Current Loop Range ... 85
1. M6200E DOCUMENTATION

Thank you for purchasing the Model 6200E UV Fluorescence H₂S Analyzer!

The documentation for this instrument is available in several different formats:

- Printed format, part number M6200E
- Electronic format on a CD-ROM, part number M6200E_CD

The electronic manual is in Adobe® Systems Inc. “Portable Document Format”. The Adobe® Acrobat Reader® software, which is necessary to view these files, can be downloaded for free from the internet at http://www.adobe.com/.

The electronic version of the manual has many advantages:

- Keyword and phrase search feature
- Figures, tables and internet addresses are linked so that clicking on the item will display the associated feature or open the website.
- A list of chapters and sections as well as thumbnails of each page are displayed to the left of the text.
- Entries in the table of contents are linked to the corresponding locations in the manual.
- Ability to print sections (or all) of the manual

Additional documentation for the Model 6200E UV Fluorescence H₂S Analyzer is available from Teledyne Analytical Instruments’ website at http://www.teledyne-api.com/manuals/

- APICOM software manual, part number 03945
- Multi-drop manual, part number 01842
- DAS Manual, part number 02837.

1.1. Using This Manual

This manual has the following data structures:

1.0 Table of Contents:

Outlines the contents of the manual in the order the information is presented. This is a good overview of the topics covered in the manual. There is also a list of tables, a list of figures and a list of appendices. In the electronic version of the manual, clicking on any of these table entries automatically views that section.
2.0 Specifications and Warranty

This section contains a list of the analyzer’s performance specifications, a description of the conditions and configuration under which EPA equivalency was approved and Teledyne Analytical Instruments Incorporated warranty statement.

3.0 Getting Started:

A concise set of instructions for setting up, installing and running your analyzer for the first time.

4.0 FAQ:

Answers to the most frequently asked questions about operating the analyzer.

5.0 Optional Hardware & Software

A description of optional equipment to add functionality to your analyzer.

6.0 Operation Instructions

This section includes step by step instructions for operating the analyzer and using its various features and functions.

7.0 Calibration Procedures

General information and step by step instructions for calibrating your analyzer.

8.0 Instrument Maintenance

Description of certain preventative maintenance procedures that should be regularly performed on your instrument to keep it in good operating condition. This section also includes information on using the iDAS to record diagnostic functions useful in predicting possible component failures before they happen.

9.0 Theory of Operation

An in-depth look at the various principals by which your analyzer operates as well as a description of how the various electronic, mechanical and pneumatic components of the instrument work and interact with each other. A close reading of this section is invaluable for understanding the instrument’s operation.

10.0 Troubleshooting Section:

This section includes pointers and instructions for diagnosing problems with the instrument, such as excessive noise or drift, as well as instructions on performing repairs of the instrument’s major subsystems.

11.0 Electro-static Discharge Primer

This section describes how static electricity occurs; why it is a significant concern and; how to avoid it and avoid allowing ESD to affect the reliable and accurate operation of your analyzer.
Appendices:

For easier access and better updating, some information has been separated out of the manual and placed in a series of appendices at the end of this manual. These include: software menu trees, warning messages, definitions of iDAS & serial I/O variables, spare parts list, repair questionnaire, interconnect listing and drawings, and electronic schematics.

NOTE

Throughout this manual, words printed in capital, bold letters, such as SETUP or ENTR represent messages as they appear on the analyzer’s front panel display.

NOTE

The flowcharts in this manual contain typical representations of the analyzer’s display during the various operations being described. These representations are not intended to be exact and may differ slightly from the actual display of your instrument.

User Notes:
2. SPECIFICATIONS, APPROvals AND WARRANTY

2.1. Specifications

Table 2-1: Model 6200E Basic Unit Specifications

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min/Max Range (Physical Analog Output)</td>
<td>In 1 ppb increments from 50 ppb to 20 000 ppb, independent ranges or auto ranging</td>
</tr>
<tr>
<td>Measurement Units</td>
<td>ppb, ppm, µg/m³, mg/m³ (user selectable)</td>
</tr>
<tr>
<td>Zero Noise¹</td>
<td>0.2 ppb RMS</td>
</tr>
<tr>
<td>Span Noise²</td>
<td>0.2 ppb RMS</td>
</tr>
<tr>
<td>Lower Detectable Limit²</td>
<td>0.4 ppb RMS</td>
</tr>
<tr>
<td>Zero Drift (24 hours)</td>
<td><0.5 ppb</td>
</tr>
<tr>
<td>Zero Drift (7 days)</td>
<td>1 ppb</td>
</tr>
<tr>
<td>Span Drift (7 Days)</td>
<td><0.5% FS</td>
</tr>
<tr>
<td>Linearity</td>
<td>1% of full scale</td>
</tr>
<tr>
<td>Precision</td>
<td>0.5% of reading¹</td>
</tr>
<tr>
<td>Temperature Coefficient</td>
<td>< 0.1% per °C</td>
</tr>
<tr>
<td>Voltage Coefficient</td>
<td>< 0.05% per V</td>
</tr>
<tr>
<td>Rise/Fall Time¹</td>
<td>95% in <100 sec</td>
</tr>
<tr>
<td>Sample Flow Rate</td>
<td>650cc/min. ±10%</td>
</tr>
<tr>
<td>Temperature Range</td>
<td>5-40°C</td>
</tr>
<tr>
<td>Humidity Range</td>
<td>0 - 95% RH, non-condensing</td>
</tr>
<tr>
<td>Dimensions H x W x D</td>
<td>7" x 17" x 23.5" (178 mm x 432 mm x 597 mm)</td>
</tr>
<tr>
<td>Weight, Analyzer (Basic Configuration)</td>
<td>45 lbs (20.5 kg) w/internal pump</td>
</tr>
<tr>
<td>AC Power Rating</td>
<td>100 V, 50/60 Hz (1.7 A / 2.3 A surge); 115 V, 60 Hz (1.5 A / 2.0 A surge); 220 – 240 V, 50/60 Hz (.0.75 A \ 1.0 A surge)</td>
</tr>
<tr>
<td>Environmental</td>
<td>Installation category (over-voltage category) II; Pollution degree 2</td>
</tr>
<tr>
<td>Analog Outputs</td>
<td>Three (3) Outputs</td>
</tr>
<tr>
<td>Analog Output Ranges</td>
<td>100 mV, 1 V, 5 V, 10 V, 2-20 or 4-20 mA isolated current loop. All Ranges with 5% Under/Over Range</td>
</tr>
<tr>
<td>Analog Output Resolution</td>
<td>1 part in 4096 of selected full-scale voltage</td>
</tr>
<tr>
<td>Status Outputs</td>
<td>8 Status outputs from opto-isolators</td>
</tr>
<tr>
<td>Control Inputs</td>
<td>6 Control Inputs, 3 defined, 3 spare</td>
</tr>
<tr>
<td>Serial I/O</td>
<td>One (1) RS-232; One (1) RS-485 (2 connectors in parallel)</td>
</tr>
<tr>
<td>Baud Rate</td>
<td>300 – 115200; Optional Ethernet Interface</td>
</tr>
<tr>
<td></td>
<td>IEC 61010-1:90 + A1:92 + A2:95,</td>
</tr>
</tbody>
</table>

¹ As defined by the USEPA.
² Defined as twice the zero noise level by the USEPA.
2.2. EPA Equivalency Designation

The Model 6200E Analyzer is designated as Reference Method Number EQOA-XXXX-XXX as per 40 CFR Part 53 when operated under the following conditions:

- Range: Any range from 50 parts per billion (ppb) to 10 parts per million (ppm).
- Ambient temperature range of 5 °C to 40 °C.
- Line voltage range of 105-125 VAC or 220-240 VAC, at 50 or 60 Hz.
- Sample filter: Equipped with PTFE filter element in the internal filter assembly.
- Sample flow of 650 +/- 65 cc/min.
- Vacuum pump (internal or external) capable of 14"Hg absolute pressure @ 1 slpm or better.
- Software settings:

<table>
<thead>
<tr>
<th>Setting</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dynamic span</td>
<td>OFF</td>
</tr>
<tr>
<td>Dynamic zero</td>
<td>OFF</td>
</tr>
<tr>
<td>Dilution factor</td>
<td>OFF</td>
</tr>
<tr>
<td>AutoCal</td>
<td>ON or OFF</td>
</tr>
<tr>
<td>IND range</td>
<td>ON or OFF</td>
</tr>
<tr>
<td>Auto-range</td>
<td>ON or OFF</td>
</tr>
<tr>
<td>Temp/Pressure comp.</td>
<td>ON</td>
</tr>
</tbody>
</table>

Under the designation, the analyzer may be operated with or without the following optional equipment:

- Rack mount with or without chassis slides.
- Zero/span valve options.
- Internal zero/span (IZS) option with:
 - H₂S permeation tube - 0.4ppm at 0.7 liter per minute; certified/uncertified.
 - H₂S permeation tube - 0.8 ppm at 0.7 liter per minute; certified/uncertified. Under the designation, the IZS option cannot be used as the source of calibration.
- 4-20mA isolated analog outputs.
- Status outputs.
- Control inputs.
- RS-232 output.
- Ethernet output.
- Zero air scrubber.
- 4-20mA, isolated output.
2.3. CE Mark Compliance

2.3.1. Emissions Compliance

The Teledyne Analytical Instruments UV Fluorescence H₂S Analyzer M6200E was tested and found to be fully compliant with:

Class A (ANSI C63.4 1992) & AS/NZS 3548 (w/A1 & A2; 97) Class A.

2.3.2. Safety Compliance

The Teledyne Analytical Instruments’ UV Fluorescence H₂S Analyzer M6200E was tested and found to be fully compliant with:

IEC 61010-1:90 + A1:92 + A2:95,

2.4. Warranty

Warranty Policy (02024)

Prior to shipment, Teledyne Analytical Instruments Incorporated equipment is thoroughly inspected and tested. Should equipment failure occur, Teledyne Analytical Instruments Incorporated assures its customers that prompt service and support will be available.

Coverage

After the warranty period and throughout the equipment lifetime, Teledyne Analytical Instruments Incorporated stands ready to provide on-site or in-plant service at reasonable rates similar to those of other manufacturers in the industry. All maintenance and the first level of field troubleshooting is to be performed by the customer.

Non-TAI Manufactured Equipment

Equipment provided but not manufactured by Teledyne Analytical Instruments Incorporated is warranted and will be repaired to the extent and according to the current terms and conditions of the respective equipment manufacturers warranty.

General

Teledyne Analytical Instruments Incorporated warrants each product manufactured by Teledyne Analytical Instruments Incorporated to be free from defects in material and workmanship under normal use and service for a period of one year from the date of delivery. All replacement parts and repairs are warranted for 90 days after the purchase.

If a product fails to conform to its specifications within the warranty period, Teledyne Analytical Instruments Incorporated shall correct such defect by, in Teledyne Analytical Instruments’ discretion, repairing or replacing such defective product or refunding the purchase price of such product.
The warranties set forth in this section shall be of no force or effect with respect to any product: (i) that has been altered or subjected to misuse, negligence or accident, or (ii) that has been used in any manner other than in accordance with the instruction provided by Teledyne Analytical Instruments Incorporated or (iii) not properly maintained.

THE WARRANTIES SET FORTH IN THIS SECTION AND THE REMEDIES THEREFORE ARE EXCLUSIVE AND IN LIEU OF ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR PARTICULAR PURPOSE OR OTHER WARRANTY OF QUALITY, WHETHER EXPRESSED OR IMPLIED. THE REMEDIES SET FORTH IN THIS SECTION ARE THE EXCLUSIVE REMEDIES FOR BREACH OF ANY WARRANTY CONTAINED HEREIN. TELEDYNE ANALYTICAL INSTRUMENTS INCORPORATED SHALL NOT BE LIABLE FOR ANY INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATED TO THIS AGREEMENT OF TELEDYNE ANALYTICAL INSTRUMENTS INCORPORATED'S PERFORMANCE HEREUNDER, WHETHER FOR BREACH OF WARRANTY OR OTHERWISE.

Terms and Conditions

All units or components returned to Teledyne Analytical Instruments Incorporated should be properly packed for handling and returned freight prepaid to the nearest designated Service Center. After the repair, the equipment will be returned, freight prepaid.

User Notes:
3. GETTING STARTED

3.1. Unpacking and Initial Setup

1. Inspect the received packages for external shipping damage. If damaged, please advise the shipper first, then Teledyne Analytical Instruments.

2. Included with your analyzer is a printed record (Form number 04551) of the final performance characterization performed on your instrument at the factory. This record is an important quality assurance and calibration record for this instrument. It should be placed in the quality records file for this instrument.

3. Carefully remove the top cover of the analyzer and check for internal shipping damage.
 - Remove the set screw located in the top, center of the rear panel
 - Remove the screws fastening the top cover to the unit (four per side).
 - Lift the cover straight up.

NOTE

Printed circuit assemblies (PCAs) are static sensitive. Electro-static discharges (ESD), too small to be felt by the human nervous system, are large enough to destroy sensitive circuits.

Before touching PCAs, read Chapter 12 of this manual and follow the procedure described there for avoiding damage to your instrument due to ESD.

CAUTION

Never disconnect electronic circuit boards, wiring harnesses or electronic subassemblies while the unit is under power.

4. Inspect the interior of the instrument to make sure all circuit boards and other components are in good shape and properly seated.

5. Check the connectors of the various internal wiring harnesses and pneumatic hoses to make sure they are firmly and properly seated.
6. Verify that all of the optional hardware ordered with the unit has been installed. These are checked on the paperwork (Form 04551) accompanying the analyzer.

7. Once you have determined that no shipping damage exists and the unit includes all expected hardware options, remove five, RED colored shipping screws from the bottom of the chassis, shown in Figure 3-1. There are:

 - Three locking down the sample chamber sensor housing assembly.
 - Two locking down the internal pump visible from bottom of instrument.

 Sensor Housing Shipping Screws
 Remove from inside of instrument.

 Pump Shipping Screws
 Remove from outside, bottom of instrument.

 Figure 3-1: Location of Shipping Screws

 NOTE

 Save these shipping screws and re-install them whenever the unit is shipped.
8. **VENTILATION CLEARANCE**: Whether the analyzer is set up on a bench or installed into an instrument rack, be sure to leave sufficient ventilation clearance.

<table>
<thead>
<tr>
<th>AREA</th>
<th>MINIMUM REQUIRED CLEARANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back of the instrument</td>
<td>10 cm / 4 inches</td>
</tr>
<tr>
<td>Sides of the instrument</td>
<td>2.5 cm / 1 inch</td>
</tr>
<tr>
<td>Above and below the instrument</td>
<td>2.5 cm / 1 inch</td>
</tr>
</tbody>
</table>

- Various rack mount kits are available for this analyzer. See Chapter 5 of this manual for more information.

3.1.1. Electrical Connections:

CAUTION

Check the voltage and frequency label on the rear panel of the instrument (See Figure 3-2) for compatibility with the local power before plugging the M6200E into line power.

Do not plug in the power cord if the voltage or frequency is incorrect.

CAUTION

Power connection must have functioning ground connection.

Do not defeat the ground wire on power plug.

Turn off analyzer power before disconnecting or connecting electrical subassemblies.

Do not operate with cover off.

![Figure 3-2: Rear Panel Layout](image)
3.1.1.1. Connecting the Analog Outputs

Attach a strip chart recorder and/or data-logger to the appropriate contacts of the analog output connector on the rear panel of the analyzer.

![Analog Output Connector]

Figure 3-3: Analog Output Connector

The A1 and A2 channels output a signal that is proportional to the H₂S concentration of the sample gas.

The output, labeled A4 is special. It can be set by the user (Section 6.9.10) to output any one of the parameters accessible through the <TST TST> keys of the units sample display.

Pin-outs for the Analog Output connector at the rear panel of the instrument are:

<table>
<thead>
<tr>
<th>PIN</th>
<th>ANALOG OUTPUT</th>
<th>VOLTAGE OUTPUT</th>
<th>CURRENT LOOP OPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td>V Out</td>
<td>I Out +</td>
</tr>
<tr>
<td>2</td>
<td>A1</td>
<td>Ground</td>
<td>I Out -</td>
</tr>
<tr>
<td>3</td>
<td>A2</td>
<td>V Out</td>
<td>I Out +</td>
</tr>
<tr>
<td>4</td>
<td>A2</td>
<td>Ground</td>
<td>I Out -</td>
</tr>
<tr>
<td>5</td>
<td>A3</td>
<td>Not Available</td>
<td>I Out +</td>
</tr>
<tr>
<td>6</td>
<td>A3</td>
<td>Not Available</td>
<td>I Out -</td>
</tr>
<tr>
<td>7</td>
<td>A4</td>
<td>V Out</td>
<td>Not Available</td>
</tr>
<tr>
<td>8</td>
<td>A4</td>
<td>Ground</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

- The default analog output voltage setting of the M6200E UV Fluorescence H₂S Analyzer is 0 – 5 VDC with a range of 0 – 500 ppb.
- To change these settings, see Sections 6.9.4 and 6.7 respectively.

An optional Current Loop output is available for each (See Section 5.2).

3.1.1.2. Connecting the Status Outputs

The analyzer’s status outputs are accessed through a 12 pin connector on the analyzer’s rear panel labeled STATUS. They are used to interface with a device that accepts closed-contact digital inputs, such as programmable logic controllers (PLC’s).
NOTE

Most PLC’s have internal provisions for limiting the current the input will draw. When connecting to a unit that does not have this feature, external resistors must be used to limit the current through the individual transistor outputs to $\leq 50\text{mA}$ ($120\ \Omega$ for 5V supply).

Table 3-2: Status Output Signals

<table>
<thead>
<tr>
<th>REAR PANEL LABEL</th>
<th>STATUS DEFINITION</th>
<th>CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>SYSTEM OK</td>
<td>ON if no faults are present.</td>
</tr>
<tr>
<td>2</td>
<td>CONC VALID</td>
<td>OFF any time the HOLD OFF feature is active, such as during calibration or when other faults exist possibly invalidating the current concentration measurement (example: sample flow rate is outside of acceptable limits). ON if concentration measurement is valid.</td>
</tr>
<tr>
<td>3</td>
<td>HIGH RANGE</td>
<td>ON if unit is in high range of the AUTO Range Mode</td>
</tr>
<tr>
<td>4</td>
<td>ZERO CAL</td>
<td>ON whenever the instrument’s ZERO point is being calibrated.</td>
</tr>
<tr>
<td>5</td>
<td>SPAN CAL</td>
<td>ON whenever the instrument’s SPAN point is being calibrated.</td>
</tr>
<tr>
<td>6</td>
<td>DIAG MODE</td>
<td>ON whenever the instrument is in DIAGNOSTIC mode</td>
</tr>
<tr>
<td>7 - 8</td>
<td>SPARE</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>EMMITTER BUS</td>
<td>The emitters of the transistors on pins 1-8 are bussed together.</td>
</tr>
<tr>
<td>SPARE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>+</td>
<td>DC POWER</td>
<td>+ 5 VDC, 300 mA source (combined rating with Control Output, if used).</td>
</tr>
<tr>
<td>\uparrow</td>
<td>Digital Ground</td>
<td>The ground level from the analyzer’s internal DC power supplies</td>
</tr>
</tbody>
</table>
3.1.1.3. Connecting the Control Inputs

If you wish to use the analyzer to remotely activate the zero and span calibration modes, several digital control inputs are provided through a 10-pin connector labeled CONTROL IN on the analyzer’s rear panel.

There are two methods for energizing the control inputs. The internal +5V available from the pin labeled “+” is the most convenient method. However, if full isolation is required, an external 5 VDC power supply should be used.

![Control Input Connector Diagram]

Figure 3-5: Control Input Connector

<table>
<thead>
<tr>
<th>INPUT #</th>
<th>STATUS DEFINITION</th>
<th>ON CONDITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>REMOTE ZERO CAL</td>
<td>The analyzer is placed in Zero Calibration mode. The mode field of the display will read ZERO CAL R.</td>
</tr>
<tr>
<td>B</td>
<td>REMOTE LO SPAN CAL</td>
<td>The analyzer is placed in low span calibration mode as part of performing a low span (midpoint) calibration. The mode field of the display will read LO CAL R.</td>
</tr>
<tr>
<td>C, D, E & F</td>
<td>SPARE</td>
<td>The ground level from the analyzer’s internal DC power supplies (same as chassis ground)</td>
</tr>
<tr>
<td>U</td>
<td>External Power input</td>
<td>Input pin for +5 VDC required to activate pins A – F.</td>
</tr>
<tr>
<td>+</td>
<td>5 VDC output</td>
<td>Internally generated 5V DC power. To activate inputs A – F, place a jumper between this pin and the “U” pin. The maximum amperage through this port is 300 mA (combined with the analog output supply, if used).</td>
</tr>
</tbody>
</table>
3.1.1.4. Connecting the Serial Ports

If you wish to utilize either of the analyzer’s two serial interfaces, refer to Section 6.10 and 6.12 of this manual for instructions on configuration and usage.

3.1.1.5. Connecting to a LAN or the Internet

If your unit has a Teledyne Analytical Instruments Ethernet card (Option 63), plug one end of the 7’ CAT5 cable supplied with the option into the appropriate place on the back of the analyzer (see Figure 5-6 in Section 5.6.3) and the other end into any nearby Ethernet access port.

3.1.1.6. Connecting to a LAN or the Internet

If your unit has a Teledyne Analytical Instruments RS-232 multidrop card (Option 62), see section 10.6.7 for instructions on setting it up.

3.1.2. Pneumatic Connections:

CAUTION

To prevent dust from getting into the analyzer, it was shipped with small plugs inserted into each of the pneumatic fittings on the rear panel. Make sure that all dust plugs are removed before attaching exhaust and supply gas lines.

Sample and calibration gases should only come into contact with PTFE (Teflon) or glass materials. They should not come in contact with FEP or stainless steel materials.

Figures 3-6 and 3-7 show the most common configurations for gas supply and exhaust lines to the Model 6200E Analyzer. Figure 3-8 shows the connections for units with valve options installed.

Please refer to Figure 3-2 for pneumatic connections at the rear panel and Table 3-4 for nomenclature.

Table 3-4: Inlet / Outlet Connector Nomenclature

<table>
<thead>
<tr>
<th>REAR PANEL LABEL</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE</td>
<td>Connects the sample gas to the analyzer. When operating the analyzer without zero span option, this is also the inlet for any calibration gases.</td>
</tr>
<tr>
<td>EXHAUST</td>
<td>Connects the exhaust of the analyzer with the external vacuum pump.</td>
</tr>
<tr>
<td>SPAN</td>
<td>On units with zero/span/shutoff valve options installed, connect a gas line to the source of calibrated span gas here.</td>
</tr>
<tr>
<td>ZERO AIR</td>
<td>On Units with zero/span valve or IZS option installed, this port connects the zero air gas or the zero air cartridge to the analyzer.</td>
</tr>
</tbody>
</table>
1. Attach the 1/4” exhaust line to the exhaust port of the analyzer and to the inlet port of the pump.

CAUTION

The exhaust from the external pump needs to be vented outside the immediate area or shelter surrounding the instrument and conform to all safety requirements using a maximum of 10 meters of 1/4” PTFE tubing.

2. Attach the sample line to the sample inlet port. Ideally, the pressure of the sample gas should be equal to ambient atmospheric pressure.
3. Attach zero air and span gas supply lines as appropriate (see Figures 3-6 & 3.7). For this type of analyzer, zero air and span gas are defined as follows:

Zero air and span gas inlets should supply their respective gases in excess of the 700 cc³/min demand of the analyzer. Supply and vent lines should be of sufficient length and diameter to prevent back diffusion and pressure effects.

SPAN GAS

- A gas specifically mixed to match the chemical composition of the type of gas being measured at near full scale of the desired measurement range. In the case of H₂S, measurements made with the Teledyne Analytical Instruments Model 6200E UV Fluorescence H₂S Analyzer it is recommended that you use a span gas with a H₂S concentration equal to 90% of the measurement range for your application.

EXAMPLE: If the application is to measure between 0 ppb and 500 ppb, an appropriate span gas concentration would be 450 ppb H₂S in N₂.

Cylinders of calibrated H₂S gas traceable to NIST-Standard Reference Material specifications (also referred to as SRM’s or EPA protocol calibration gases) are commercially available. Table 3-5 lists specific NIST-SRM reference numbers for various concentrations of H₂S.

Some applications, such as EPA monitoring, require a multipoint calibration procedure where span gases of different concentrations are needed. We recommend using a bottle of calibrated H₂S gas of higher concentration in conjunction with a gas dilution calibrator such as a Teledyne Analytical Instruments Model 700. This type of calibrator precisely mixes a high concentration gas from zero air (both supplied externally) to accurately produce span gas of the correct concentration. Linearity profiles can be automated with this model and run unattended over night.

Table 3-5: NIST-SRM’s Available for Traceability of H₂S & SO₂ Calibration Gases

<table>
<thead>
<tr>
<th>NIST-SRM⁴</th>
<th>TYPE</th>
<th>NOMINAL CONCENTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2730</td>
<td>Hydrogen sulfide in N₂</td>
<td>5000 ppb</td>
</tr>
<tr>
<td>2731</td>
<td>Hydrogen sulfide in N₂</td>
<td>20 ppb</td>
</tr>
<tr>
<td>1693a</td>
<td>Sulfur dioxide in N₂</td>
<td>50 ppm</td>
</tr>
<tr>
<td>1694a</td>
<td>Sulfur dioxide in N₂</td>
<td>100 ppm</td>
</tr>
<tr>
<td>1661a</td>
<td>Sulfur dioxide in N₂</td>
<td>500 ppm</td>
</tr>
</tbody>
</table>
ZERO AIR

- A gas that is similar in chemical composition to the earth’s atmosphere but without the gas being measured by the analyzer, in this case H₂S. If your analyzer is equipped with an IZS or external zero air scrubber option, it is capable of creating zero air.

For analyzers without these options, a zero air generator such as the Teledyne Analytical Instruments Model 701 can be used.

4. Once the appropriate pneumatic connections have been made, check all pneumatic fittings for leaks using a procedure similar to that defined in Section 11.5.1.

3.1.2.1. Connections with Internal Valve Options Installed

If your analyzer is equipped with either the zero/span valve option (Option 50) or the internal zero/span option (Option 51), the pneumatic connections should be made as follows:

![Diagram of pneumatic connections](image)

Figure 3-8: Basic Pneumatic Connections for Units with Valve Options
NOTE

Gas flow must be maintained at all times for units with IZS Options installed. The IZS option includes a permeation tube which emits H$_2$S. Insufficient gas flow can build up H$_2$S to levels that will damage the instrument.

Remove the permeation device when taking the analyzer out of operation.

Figure 3-9: M6200E Layout (with IZS)
3.2. Initial Operation

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do not look at the UV lamp while the unit is operating. UV light can cause eye damage. Always use safety glasses (plastic glasses will not do).</td>
</tr>
</tbody>
</table>

If you are unfamiliar with the M6200E theory of operation, we recommend that you read Chapter 10 before proceeding.

For information on navigating the analyzer’s software menus, see the menu trees described in Appendix A.1.

3.2.1. Startup

After electrical and pneumatic connections are made, turn on the instrument and pump power. The exhaust and PMT cooler fans should start. The display should immediately display a single, horizontal dash in the upper left corner of the display. This will last approximately 30 seconds while the CPU loads the operating system.

Once the CPU has completed this activity it will begin loading the analyzer firmware and configuration data. During this process, string of messages will appear on the analyzer’s front panel display:
The analyzer should automatically switch to **SAMPLE** mode after completing the boot-up sequence and start monitoring H₂S gas.

3.2.2. Warm-Up

The M6200E requires about 60 minutes warm-up time before reliable H₂S measurements can be taken. During that time, various portions of the instrument’s front panel will behave as described in Table 3-6 below.
Table 3-6: Front Panel Display During System Warm-Up

<table>
<thead>
<tr>
<th>NAME</th>
<th>COLOR</th>
<th>BEHAVIOR</th>
<th>SIGNIFICANCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concentration</td>
<td>N/A</td>
<td>Displays current, compensated H₂S Concentration</td>
<td>N/A</td>
</tr>
<tr>
<td>Field</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mode Field</td>
<td>N/A</td>
<td>Displays blinking “SAMPLE”</td>
<td>Instrument is in sample mode but is still in the process of warming up.</td>
</tr>
<tr>
<td>Sample</td>
<td>Green</td>
<td>On</td>
<td>Unit is operating in sample mode, front panel display is being updated.</td>
</tr>
<tr>
<td>Cal</td>
<td>Yellow</td>
<td>Off</td>
<td>The instrument’s calibration is not enabled.</td>
</tr>
<tr>
<td>Fault</td>
<td>Red</td>
<td>Blinking</td>
<td>The analyzer is warming up and hence out of specification for a fault-free reading. various warning messages will appear.</td>
</tr>
</tbody>
</table>

3.2.3. Warning Messages

Because internal temperatures and other conditions may be outside of specified limits during the analyzer’s warm-up period, the software will suppress most warning conditions for 60 minutes after power up.

If warning messages persist after 60 minutes, investigate their cause using the troubleshooting guidelines in Chapter 11. The following table includes a brief description of the various warning messages that may appear.
<table>
<thead>
<tr>
<th>MESSAGE</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOG CAL WARNING</td>
<td>The instruments A/D circuitry or one of its analog outputs is not calibrated.</td>
</tr>
<tr>
<td>AZERO WRN XXX.X MV</td>
<td>The reading taken during the auto-zero cycle is outside of specified limits. The value XXX.X indicates the auto-zero reading at the time of the warning.</td>
</tr>
<tr>
<td>BOX TEMP WARNING</td>
<td>The temperature inside the M6200E chassis is outside the specified limits.</td>
</tr>
<tr>
<td>CANNOT DYN SPAN</td>
<td>Remote span calibration failed while the dynamic span feature was set to active.</td>
</tr>
<tr>
<td>CANNOT DYN ZERO</td>
<td>Remote zero calibration failed while the dynamic zero feature was set to active.</td>
</tr>
<tr>
<td>CONFIG INITIALIZED</td>
<td>Configuration was reset to factory defaults or was erased.</td>
</tr>
<tr>
<td>DARK CAL WARNING</td>
<td>Dark offset above limit specified indicating that too much stray light is present in the sample chamber.</td>
</tr>
<tr>
<td>DATA INITIALIZED</td>
<td>IDAS data storage was erased.</td>
</tr>
<tr>
<td>FRONT PANEL WARN</td>
<td>Firmware is unable to communicate with the front panel.</td>
</tr>
<tr>
<td>HVPS WARNING</td>
<td>High voltage power supply for the PMT is outside of specified limits.</td>
</tr>
<tr>
<td>IZS TEMP WARNING</td>
<td>On units with IZS options installed: The permeation tube temperature is outside of specified limits.</td>
</tr>
<tr>
<td>PMT DET WARNING</td>
<td>PMT detector output outside of operational limits.</td>
</tr>
<tr>
<td>PMT TEMP WARNING</td>
<td>PMT temperature is outside of specified limits.</td>
</tr>
<tr>
<td>RCELL PRESS WARN</td>
<td>Sample chamber pressure is outside of specified limits.</td>
</tr>
<tr>
<td>RCELL TEMP WARNING</td>
<td>Sample chamber temperature is outside of specified limits.</td>
</tr>
<tr>
<td>REAR BOARD NOT DET</td>
<td>The CPU is unable to communicate with the motherboard.</td>
</tr>
<tr>
<td>RELAY BOARD WARN</td>
<td>The firmware is unable to communicate with the relay board.</td>
</tr>
<tr>
<td>SAMPLE FLOW WARN</td>
<td>The flow rate of the sample gas is outside the specified limits.</td>
</tr>
<tr>
<td>SAMPLE PRESS WARN</td>
<td>Sample pressure outside of operational parameters.</td>
</tr>
<tr>
<td>SYSTEM RESET</td>
<td>The computer was rebooted.</td>
</tr>
<tr>
<td>UV LAMP WARNING</td>
<td>The UV lamp intensity measured by the reference detector reading too low or too high</td>
</tr>
</tbody>
</table>

To view and clear warning messages:

- TEST deactivates warning messages
- MSG activates warning messages
- Press CLR to clear the current message.
- If more than one warning is active, the next message will take its place. Once the last warning has been cleared, the analyzer returns to SAMPLE mode

NOTE: If the warning message persists after several attempts to clear it, the message may indicate a real problem and not an artifact of the warm-up period.
3.2.4. Functional Check

1. After the analyzer’s components have warmed up for at least 30 minutes, verify that the software properly supports any hardware options that were installed.

2. Check to make sure that the analyzer is functioning within allowable operating parameters. Appendix C includes a list of test functions viewable from the analyzer’s front panel as well as their expected values. These functions are also useful tools for diagnosing performance problems with your analyzer (Section 11.1.2). The enclosed Final Test and Validation Data sheet (part number 04551) lists these values before the instrument left the factory.

To view the current values of these parameters press the following key sequence on the analyzer’s front panel. Remember until the unit has completed its warm up these parameters may not have stabilized.

3. If your analyzer has an Ethernet card (Option 63) installed and your network is running a dynamic host configuration protocol (DHCP) software package, the Ethernet option will automatically configure its interface with your LAN. However, it is a good idea to check these settings to make sure that the DHCP has successfully downloaded the appropriate network settings from your network server (See Section 6.10.6.2).

If your network is not running DHCP, you will have to configure the analyzer’s interface manually (See Section 6.10.6.3).

NOTE

Once you have completed the above set-up procedures, please fill out the Quality Questionnaire that was shipped with your unit and return it to Teledyne Analytical Instruments.

This information is vital to our efforts in continuously improving our service and our products.

THANK YOU.
Figure 3-11 shows the internal pneumatic flow of the M6200E in its Standard configuration.

For information on instruments in which one of the various zero/span valve options refer to Figures 5-2 and 5-3.

Refer to these diagrams whenever trouble-shooting or a thorough understanding of the analyzer performance are required.

Figure 3-11: Pneumatic Diagram of the M6200E Standard Configuration.

<table>
<thead>
<tr>
<th>GAS MODE</th>
<th>CONDITION OF H₂S – SO₂ SWITCHING VALVE</th>
<th>VALVE PORT CONNECTION (FIG. 5-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂S</td>
<td>Open to SO₂ Scrubber and Molybdenum Converter</td>
<td>2 → 3</td>
</tr>
<tr>
<td>SO₂</td>
<td>Open to directly to Sample Chamber. Bypasses SO₂ Scrubber and Molybdenum Converter</td>
<td>2 → 1</td>
</tr>
<tr>
<td>H₂S – SO₂</td>
<td>Switches between above two states every 10 minutes.</td>
<td>- -</td>
</tr>
</tbody>
</table>
3.3. Initial Calibration

3.3.1. Basic Calibration Procedure

The following three-step procedure assumes that the instrument does not have any of the available zero/span (Z/S) or IZS valve options installed. Chapter 7 contains instructions for calibrating instruments with valve options.

The initial calibration should be carried out with the analyzer’s reporting range for SINGLE range mode with a range span of 500 PPB (factory default settings for most units). This will enable you to compare your results to the factory calibration.

STEP ONE: Set/verify the analog output reporting range of the M620E:

STEP TWO: Set the expected H₂S span gas concentration.
STEP THREE: Perform the zero/span calibration procedure:

ACTION:
- Allow zero gas to enter the sample port at the rear of the instrument.

Wait until H2S STB falls below 0.5 ppb. This may take several minutes.

Press ENTR to change the offset & slope values for the H2S measurements. Press EXIT to leave the calibration unchanged and return to the previous menu.

The value of H2S STB may jump significantly. Wait until it falls back below 0.5 ppb. This may take several minutes.

Press ENTR to change the offset & slope values for the SO2 measurements. Press EXIT to leave the calibration unchanged and return to the previous menu.

The Model 6200E analyzer is now ready for operation.
3.3.2. Interferences for H₂S Measurements

It should be noted that the fluorescence method for detecting H₂S is subject to interference from a number of sources. Since the M6200E converts H₂S into SO₂ and measures the UV fluorescence of the SO₂, the most common source of interference is from other gases that fluoresce in a similar fashion to SO₂ when exposed to UV Light such poly-nuclear aromatics (PNA), of which certain hydrocarbons such as meta-xylene and naphthalene are the most pervasive. The M6200E has been successfully tested for its ability to reject interference from most of these sources.

For a more detailed discussion of this topic, see Section 10.2.6.

NOTE

Once you have completed the above set-up procedures, please fill out the quality questionnaire that was shipped with your unit and return it to Teledyne Analytical Instruments. This information is vital to our efforts in continuously improving our service and our products. Thank you.

User Notes:
4. FREQUENTLY ASKED QUESTIONS & GLOSSARY

4.1. FAQ’s

The following list contains some of the most commonly asked questions relating to the Model 6200E H₂S Analyzer.

Q: Why is the **ZERO** or **SPAN** key not displayed during calibration?
A: The M6200E disables certain keys whenever the chosen value is out of range for that particular parameter. In this case, the expected span or zero value is too different from the actually measured value for the calibration process to be valid.

Q: Why does the **ENTR** key sometimes disappear on the front panel display?
A: Sometimes the **ENTR** key will disappear if you select a setting that is invalid or out of the allowable range for that parameter, such as trying to set the 24-hour clock to 25:00:00 or a range to more than 20 000 ppb. Once you adjust the setting to an allowable value, the **ENTR** key will re-appear.

Q: Can I automate the calibration of my analyzer?
A: Any analyzer with zero/span valve or IZS option can be automatically calibrated using the instrument’s AutoCal feature.
 However, the accuracy of the IZS option’s permeation tube is ±5%. While this may be acceptable for basic calibration checks, the IZS option is not permitted as a calibration source in applications following US EPA protocols.
 To achieve highest accuracy, it is recommended to use cylinders of calibrated span gases in combination with a zero air source. Teledyne Analytical Instruments offers a zero air generator Model 701 and a gas dilution calibrator Model 700 for this purpose.

Q: What do I do if the concentration on the instrument’s front panel display does not match the value recorded or displayed on my data logger even if both instrument’s are properly calibrated?
A: This most commonly occurs for one or both of the following reasons: (1) a difference in circuit ground between the analyzer the data logger, or (2) a scale problem with the input to the data logger. The analog outputs of the analyzer can be manually calibrated to compensate for either or both of these effects, see Section 6.9.4.2 & 6.9.4.3.

Q: How often do I need to change the particulate filter?
A: Once per week. Table 9-1 contains a maintenance schedule listing the most important, regular maintenance tasks.

Sample flow is measured by attaching a calibrated flow meter to the sample inlet port when the instrument is operating. The sample flow should be 650 cm³/min ±10%. Section 11.5.2 includes detailed instructions on performing a check of the sample gas flow.
Q: How long does the sample pump last?
A: The sample pump should last about one year and the pump head should be replaced annually or when necessary. Use the RCEL pressure indicator on the front panel to see if the pump needs replacement. If this value falls below 10 in-Hg-A on average, the pump head needs to be rebuild.

Q: Do I need a strip chart recorder or external data logger?
A: No, the M6200E is equipped with a very powerful internal data acquisition system. See Section 6.11

4.2. Glossary

ASSY - acronym for Assembly

DAS - acronym for data acquisition system, the old acronym of iDAS.

DIAG - acronym for diagnostics, the diagnostic settings of the analyzer

DHCP: acronym for dynamic host configuration protocol. A protocol used by LAN or Internet servers to automatically set up the interface protocols between themselves and any other addressable device connected to the network.

DOC - Disk On Chip, the analyzer’s central storage area for analyzer firmware, configuration settings and data. This is a solid state device without mechanically moving parts that acts as a computer hard disk drive under DOS with disk label “C”. DOC chips come with 2 mb in the E-series analyzer standard configuration but are available in larger sizes.

DOS - Disk Operating System. The E-series analyzers use DR DOS

EEPROM - also referred to as a FLASH chip.

FLASH - flash memory is non-volatile, solid-state memory.

GFC – Acronym for Gas Filter Correlation.

I²C bus - a clocked, bi-directional, serial bus for communication between individual analyzer components

iDAS - acronym for internal data acquisition system

IP – acronym for internet protocol

LAN - acronym for local area network

LED - acronym for light emitting diode

PCA - acronym for printed circuit assembly, the PCB with electronic components, ready to use.

PCB - acronym for printed circuit board, the bare board without electronic components
RS-232 - a type of serial communications port
RS-485 - a type of serial communications port
TCP/IP - acronym for transfer control protocol / internet protocol, the standard communications protocol for Ethernet devices.
VARS - acronym for variables, the variables settings of the analyzer

User Notes
5. OPTIONAL HARDWARE AND SOFTWARE

This section includes descriptions of the hardware and software options available for the Model 6200E UV Fluorescence H₂S Analyzer. For assistance with ordering these options please contact the sales department of Teledyne Analytical Instruments at:

TEL: 626-961-9221
TEL: 626-934-1500
FAX: 626-961-2538
FAX: 626-934-1651
WEB SITE: http://www.teledyne-ai.com

5.1. Rack Mount Kits (Options 20a, 20b & 21)

There are several options for mounting the analyzer in standard 19” racks.

<table>
<thead>
<tr>
<th>OPTION NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT 20A</td>
<td>Rack mount brackets with 26 in. chassis slides.</td>
</tr>
<tr>
<td>OPT 20B</td>
<td>Rack mount brackets with 24 in. chassis slides.</td>
</tr>
<tr>
<td>OPT 21</td>
<td>Rack mount brackets only</td>
</tr>
</tbody>
</table>

5.2. Current Loop Analog Outputs (Option 41)

This option adds isolated, voltage-to-current conversion circuitry to the analyzer’s analog outputs. This option may be ordered separately for any of the analog outputs, it can be installed at the factory or added later. Call Teledyne Analytical Instruments sales for pricing and availability.

The current loop option can be configured for any output range between 0 and 20 mA. Information on calibrating or adjusting these outputs can be found in 6.9.4.5.
5.3. Particulate Filter Kit (Option 42A)

This option includes a one-year supply of 50 replacement particulate filters, 47mm in diameter, 1 micrometer pore size.

5.4. Calibration Valves Options

5.4.1. Zero/Span Valves (Option 50)

The Model 6200E H₂S analyzer can be equipped with a zero/span valve option for controlling the flow of calibration gases generated from external sources. This option contains two, sets of Teflon® solenoid valves located inside the analyzer that allow the user to switch either zero, span or sample gas to the instrument’s sensor. Figure 5-2 shows the internal, pneumatic connections for a Model 6200E with the zero/span valve option installed.
Figure 5-2: Pneumatic Diagram of the M6200E With Z/S Option Installed.
The following table describes the state of each valve during the analyzer’s various operational modes.

Table 5-1: Zero/Span Valve Operating States

<table>
<thead>
<tr>
<th>MODE</th>
<th>VALVE</th>
<th>CONDITION</th>
<th>VALVE PORT CONNECTION (FIG. 5-2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE</td>
<td>Sample/Cal</td>
<td>Open to SAMPLE inlet</td>
<td>3 \rightarrow 2</td>
</tr>
<tr>
<td></td>
<td>Zero/Span</td>
<td>Open to ZERO AIR inlet</td>
<td>3 \rightarrow 2</td>
</tr>
<tr>
<td>ZERO CAL</td>
<td>Sample/Cal</td>
<td>Open to zero/span inlet</td>
<td>1 \rightarrow 2</td>
</tr>
<tr>
<td></td>
<td>Zero/Span</td>
<td>Open to ZERO AIR inlet</td>
<td>3 \rightarrow 2</td>
</tr>
<tr>
<td>SPAN CAL</td>
<td>Sample/Cal</td>
<td>Open to zero/span inlet</td>
<td>1 \rightarrow 2</td>
</tr>
<tr>
<td></td>
<td>Zero/Span</td>
<td>Open to SPAN GAS inlet</td>
<td>1 \rightarrow 2</td>
</tr>
</tbody>
</table>

The state of the zero/span valves can also be controlled:

- Manually from the analyzer’s front panel by using the **SIGNAL I/O** controls located under the **DIAG** Menu (Section 6.9.2),
- By activating the instrument’s AutoCal feature (Section 7.9),
- Remotely by using the external digital control inputs (Section 6.12.1.2 and Section 7.7.1), or
- Remotely through the RS-232/485 serial I/O ports (see Appendix A-6 for the appropriate commands).

Sources of zero and span gas flow must be capable of supplying at least 600 cm³/min. Both supply lines should be vented outside of the analyzer’s enclosure. In order to prevent back-diffusion and pressure effects, these vent lines should be between 2 and 10 meters in length.

5.4.2. Internal Zero/Span Gas Generator (Option 51)

The M6200E can be equipped with an internal zero air and span gas generator (IZS). This option includes a heated enclosure for a permeation tube containing the calibration gas under high pressure, an external scrubber for producing zero air and a set of valves for switching between the sample gas inlet and the output of the zero/span subsystem, functionally very similar to the valves included in the zero/span valve option.

Figure 5-3 shows the internal pneumatic connections for a Model 6200E with the IZS option installed. The following table contains the operational state of the valves associated with the IZS option during the analyzer’s various operational modes.

Because the M6200E can be configured to measure H₂S, SO₂ or both. This option is available with permeation tubes filled with either H₂S or SO₂ (see Section 5.4.3). The instrument can only be fitted with one type of permeation tube at a time. Therefore the IZS option can only be used to calibrate or check the instrument for one gas, H₂S or SO₂, but not both.
The following table describes the state of each valve during the analyzer’s various operational modes.

Table 5-2: IZS Valve Operating States

<table>
<thead>
<tr>
<th>MODE</th>
<th>VALVE</th>
<th>CONDITION</th>
<th>VALVE PORT CONNECTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE</td>
<td>Sample/Cal</td>
<td>Open to SAMPLE inlet</td>
<td>3 → 2</td>
</tr>
<tr>
<td></td>
<td>Zero/Span</td>
<td>Open to ZERO AIR inlet</td>
<td>3 → 2</td>
</tr>
<tr>
<td>ZERO CAL</td>
<td>Sample/Cal</td>
<td>Open to zero/span valve</td>
<td>1 → 2</td>
</tr>
<tr>
<td></td>
<td>Zero/Span</td>
<td>Open to ZERO AIR inlet</td>
<td>3 → 2</td>
</tr>
<tr>
<td>SPAN CAL</td>
<td>Sample/Cal</td>
<td>Open to zero/span valve</td>
<td>1 → 2</td>
</tr>
<tr>
<td></td>
<td>Zero/Span</td>
<td>Open to SPAN GAS inlet</td>
<td>1 → 2</td>
</tr>
</tbody>
</table>
The state of the IZS valves can also be controlled:

- Manually from the analyzer’s front panel by using the **SIGNAL I/O** controls located under the **DIAG** Menu (Section 6.9.2),
- By activating the instrument’s AutoCal feature (Section 7.9),
- Remotely by using the external digital control inputs (Section 6.12.1.2 and Section 7.7.1), or
- Remotely through the RS-232/485 serial I/O ports (see Appendix A-6 for the appropriate commands).

Sources of zero and span gas flow must be capable of supplying at least 600 cm³/min. Both supply lines should be vented outside of the analyzer’s enclosure. In order to prevent back-diffusion and pressure effects, these vent lines should be between 2 and 10 meters in length.

External Zero Air Scrubber

The IZS option includes an external zero air scrubber assembly that removes all H₂S the zero air source. The scrubber is filled with activated charcoal.

The Permeation Source

Span gas is created when zero air passes over a permeation tube containing liquid H₂S under high pressure, which slowly permeates through a PTFE membrane into the surrounding air. The speed at which the H₂S permeates the membrane is called the effusion rate. The concentration of the span gas is determined by three factors:

- **Size of the membrane:** The larger the area of the membrane, the more permeation occurs.
- **Temperature of the NO₂:** Increasing the temperature of the increases the pressure inside the tube and therefore increases the effusion rate.
- **Flow rate of the zero air:** If the previous two variables are constant, the permeation rate of the calibration gas into the zero air stream will be constant. Therefore, a lower flow rate of zero air produces higher concentrations of H₂S. The M6200E usually has a constant flow rate and a constant permeation rate, hence, variations in concentration can be achieved by changing the IZS temperature.

NOTE

The permeation tube is not included in the IZS Option and must be ordered separately. See Section 5.4.3 below.

Permeation Tube Heater

In order to keep the permeation rate constant, the IZS enclosure is heated to a constant 50° C (10° above the maximum operating temperature of the instrument). The IZS heater is controlled by a precise PID (Proportional/Integral/Derivative) temperature control loop. A thermistor measures the actual temperature and reports it to the CPU for control feedback.
CAUTION

Gas flow must be maintained at all time for units with a permeation tube installed. Insufficient gas flow allows gas to build up to levels that will contaminate the instrument.

5.4.3. IZS Permeation Tubes (Options 53, 55 & 57)

Several replacement permeation tubes are available for the IZS option. They are identical in size and shape but are designed to have different effusion rates. Since the M6200E can be configured as either a H₂S or SO₂ analyzer, both types of permeation tubes are included here.

<table>
<thead>
<tr>
<th>OPTION</th>
<th>GAS TYPE</th>
<th>EFFUSION RATE (± 25%)</th>
<th>APPROXIMATE CONCENTRATION</th>
<th>SPECIFIED FLOW RATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT 52</td>
<td>H₂S</td>
<td>106 ng/min</td>
<td>800 – 1200 ppb</td>
<td>0.76 lpm</td>
</tr>
<tr>
<td>OPT 53</td>
<td>SO₂</td>
<td>421 ng/min</td>
<td>300 – 500 ppb</td>
<td>0.76 lpm</td>
</tr>
<tr>
<td>Opt 54</td>
<td>H₂S</td>
<td>53 ng/min</td>
<td>400 – 600 ppb</td>
<td>0.76 lpm</td>
</tr>
<tr>
<td>OPT 55</td>
<td>SO₂</td>
<td>842 ng/min</td>
<td>600 – 1000 ppb</td>
<td>0.76 lpm</td>
</tr>
<tr>
<td>OPT 57</td>
<td>SO₂</td>
<td>222 ng/min</td>
<td>800 – 1200 ppb</td>
<td>0.56 lpm</td>
</tr>
</tbody>
</table>

Each tube comes with a calibration certificate, traceable to a NIST standard, specifying its actual effusion rate of that tube to within ±5% when immersed in a gas stream moving at the specified flow rate. This calibration is performed at a tube temperature of 50° C.

NOTE

The instrument can only be fitted with one type of permeation tube at a time. Therefore the IZS option can only be used to calibrate or check the instrument for one gas, H₂S or SO₂, but not both.

5.4.4. Zero Air Scrubber Maintenance Kit (Option 43)

This kit includes the following items needed to refurbish the zero air scrubber, included with the IZS valve options.

<table>
<thead>
<tr>
<th>TELEDYNE ANALYTICAL INSTRUMENTS PART NO.</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>005960000</td>
<td>Activated charcoal</td>
</tr>
<tr>
<td>FL0000001</td>
<td>Sintered filter for span gas inlet fitting¹</td>
</tr>
<tr>
<td>FL0000003</td>
<td>Replacement particulate filter</td>
</tr>
<tr>
<td>OR0000001</td>
<td>O-Ring (qty:2)¹</td>
</tr>
</tbody>
</table>

¹ Formatted: Bullets and Numbering
5.5. Multigas Measurement Option (option 82)

When installed and operating the multigas measurement option allows the instrument to be configured so that it can measure either or both \(\text{H}_2\text{S} \) or \(\text{SO}_2 \). A valve directs the sample gas stream through alternate gas paths that all allowing the analyzer to measure either \(\text{H}_2\text{S} \) or ambient \(\text{SO}_2 \).

When the multigas option, is activated, this option the instrument may be used in one of three gas measurement modes.

<table>
<thead>
<tr>
<th>GAS MODE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{H}_2\text{S})</td>
<td>The sample gas stream is stripped of any ambient (\text{SO}_2) by a special chemical scrubber, then passed through a catalytic converter that changes the (\text{H}_2\text{S}) present into (\text{SO}_2) which is then measured using the UV Fluorescence method</td>
</tr>
<tr>
<td>(\text{SO}_2)</td>
<td>The sample gas stream bypasses the (\text{SO}_2) Scrubber and catalytic converter allowing the only ambient (\text{SO}_2) to be measured.</td>
</tr>
<tr>
<td>(\text{H}_2\text{S} – \text{SO}_2)</td>
<td>The switching valve alternates the gas stream between the two paths at regular intervals allowing the instrument to measure both gases.</td>
</tr>
</tbody>
</table>

See Sections 6.8.1 and 10.3.2 for more information.

5.6. Communication Options

5.6.1. RS232 Modem Cable (Option 60)

This option consists of a cable to connect the analyzer’s COM1 port to a computer, a code activated switch or any other communications device that is equipped with a DB-9 male connector. The cable is terminated with two DB-9 female connectors, one of which fits the analyzer’s COM1 port.

Some older computers or code activated switches with a DB-25 serial connector will need a different cable or an appropriate adapter.

5.6.2. RS-232 Multidrop (Option 62)

The multidrop option is used with any of the RS-232 serial ports to enable communications of up to eight analyzers with the host computer over a chain of RS-232 cables via the instruments COM1 Port. It is subject to the distance limitations of the RS 232 standard.

The option consists of a small printed circuit assembly, which is plugs into to the analyzer’s CPU card (see Figure 5-4) and is connected to the RS-232 and COM2 DB9 connectors on the instrument’s back panel via a cable to the motherboard. One option 62 is required for each analyzer along with one 6’ straight-through, DB9 male \(\rightarrow \) DB9 Female cable (P/N WR0000101).
This option can be installed in conjunction with the Ethernet option (Option 63) allowing the instrument to communicate on both types of networks simultaneously. For more information on using and setting up this option see Section 6.10.7.

![M6200E Multidrop Card](image)

Figure 5-4: M6200E Multidrop Card

5.6.3. Ethernet (Option 63)

The Ethernet option allows the analyzer to be connected to any Ethernet local area network (LAN) running TCP/IP. The local area network must have routers capable of operating at 10BaseT. If Internet access is available through the LAN, this option also allows communication with the instrument over the public Internet.

When installed, this option is electronically connected to the instrument’s COM2 serial port making that port no longer available for RS-232/RS-485 communications through the COM2 connector on the rear panel. The option consists of a Teledyne Analytical Instruments designed Ethernet card (Figure 5-5), which is mechanically attached to the instrument’s rear panel (Figure 5-6). A 7-foot long, CAT-5 network cable terminated at both ends with standard RJ-45 connectors is included as well. Maximum communication speed is limited by the RS-232 port to 115.2 kBaup.
Figure 5-5: M6200E Ethernet Card

Figure 5-6: M6200E Rear Panel with Ethernet Installed

This option can be installed in conjunction with the RS-232 multidrop (option 62) allowing the instrument to communicate on both types of networks simultaneously. For more information on using and setting up this option see Section 6.10.6.)
5.7. Additional Manuals

5.7.1. Printed Manuals (Option 70)

Additional printed copies of this manual are available from Teledyne Analytical Instruments

5.7.2. Manual on CD (Part number M6200_CD)

This operators manual is also available on CD. The electronic document is stored in Adobe Systems Inc. Portable Document Format (PDF) and is viewable with Adobe Acrobat Reader® software, downloadable for free at http://www.adobe.com/

The CD version of the manual has many advantages:

Fully searchable text.

Hypertext links for figures, tables, table of contents and embedded references for quick access of individual manual portions.

A list of thumbnails, chapters and sections displayed at the left of the text.

Internet links embedded in the manual will take you to the corresponding web site (requires an internet connection).
5.8. Extended Warranty (Options 92 & 93)

Two options are available for extending Teledyne Analytical Instruments’ standard warranty (Section 2.3). Both options have to be specified upon ordering the analyzer.

<table>
<thead>
<tr>
<th>Option Number</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPT 92</td>
<td>Extends warranty to cover a two (2) year period from the date of purchase.</td>
</tr>
<tr>
<td>OPT 93</td>
<td>Extends warranty to cover a five (5) year period from the date of purchase.</td>
</tr>
</tbody>
</table>

5.9. Special Software Features

5.9.1. Maintenance Mode Switch

Teledyne Analytical Instruments analyzers are equipped with a switch that places the instrument in maintenance mode. When present, the switch is accessed by opening the hinged front panel and is located on the rearward facing side of the display/keyboard driver PCA; on the left side; near the particulate filter.

When in maintenance mode the instrument ignores all commands received via the COMM ports that alter the operation state of the instrument. This includes all calibration commands, diagnostic menu commands and the reset instrument command. The instrument continues to measure concentration and send data when requested.

This feature is of particular use for instruments connected to multidrop or Hessen protocol networks.

5.9.2. Second Language Switch

Teledyne Analytical Instruments analyzers are equipped with a switch that activates an alternate set of display messages in a language other than the instrument’s default language. This switch is accessed by opening the hinged front panel and is located on the rearward facing side of the display/keyboard driver PCA; on the right side.

To activate this feature, the instrument must also have a specially programmed Disk on Chip containing the second language. Contact Teledyne Analytical Instruments Customer Service personnel for more information.

5.9.3. Dilution Ratio Option

The dilution ratio feature is a software option that is designed for applications where the sample gas is diluted before being analyzed by the Model 6200E. Typically this occurs in continuous emission monitoring (CEM) applications where the quality of gas in a smoke stack is being tested and the sampling method used to remove the gas from the stack dilutes the gas.
Once the degree of dilution is known, this feature allows the user to add an appropriate scaling factor to the analyzer’s CO₂ concentration calculation so that the measurement range and concentration values displayed on the instrument’s front panel display and reported via the analog and serial outputs reflect the undiluted values.

Contact Teledyne Analytical Instruments Customer Service personnel for information on activating this feature.

Instructions for using the dilution ratio option can be found in Section 6.7.8.

User Notes:
6. OPERATING INSTRUCTIONS

To assist in navigating the analyzer’s software, a series of menu trees can be found in Appendix A-1 of this manual.

NOTES

The flow charts appearing in this section contain typical representations of the analyzer’s display during the various operations being described. These representations may differ slightly from the actual display of your instrument.

The ENTR key may disappear if you select a setting that is invalid or out of the allowable range for that parameter, such as trying to set the 24-hour clock to 25:00:00. Once you adjust the setting to an allowable value, the ENTR key will re-appear.

6.1. Overview of Operating modes

The M6200E software has a variety of operating modes. Most commonly, the analyzer will be operating in SAMPLE mode. In this mode, a continuous read-out of the H2S concentration is displayed on the front panel and output as an analog voltage from rear panel terminals, calibrations can be performed, and TEST functions and WARNING messages can be examined.

The second most important operating mode is SETUP mode. This mode is used for performing certain configuration operations, such as for the iDAS system, the reporting ranges, or the serial (RS-232/RS-485/Ethernet) communication channels. The SET UP mode is also used for performing various diagnostic tests during troubleshooting.

Mode Field

![Mode Field Diagram]

Figure 6-1: Front Panel Display

The mode field of the front panel display indicates to the user which operating mode the unit is currently running.
Besides SAMPLE and SETUP, other modes the analyzer can be operated in are:

Table 6-1: Analyzer Operating modes

<table>
<thead>
<tr>
<th>MODE</th>
<th>EXPLANATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DIAG</td>
<td>One of the analyzer's diagnostic modes is active (Section 6.9).</td>
</tr>
<tr>
<td>M-P CAL</td>
<td>This is the basic calibration mode of the instrument and is activated by pressing the CAL key.</td>
</tr>
<tr>
<td>SAMPLE</td>
<td>Sampling normally, flashing text indicates adaptive filter is on.</td>
</tr>
<tr>
<td>SAMPLE A</td>
<td>Indicates that unit is in SAMPLE mode and AUTOCAL feature is activated.</td>
</tr>
<tr>
<td>SETUP X. #2</td>
<td>SETUP mode is being used to configure the analyzer. The gas measurement will continue during this process.</td>
</tr>
<tr>
<td>SPAN CAL A1</td>
<td>Unit is performing SPAN calibration initiated automatically by the analyzer’s AUTOCAL feature</td>
</tr>
<tr>
<td>SPAN CAL M1</td>
<td>Unit is performing SPAN calibration initiated manually by the user.</td>
</tr>
<tr>
<td>SPAN CAL R1</td>
<td>Unit is performing SPAN calibration initiated remotely through the COM ports or digital control inputs.</td>
</tr>
<tr>
<td>ZERO CAL A1</td>
<td>Unit is performing ZERO calibration procedure initiated automatically by the AUTOCAL feature</td>
</tr>
<tr>
<td>ZERO CAL M1</td>
<td>Unit is performing ZERO calibration procedure initiated manually by the user.</td>
</tr>
<tr>
<td>ZERO CAL R1</td>
<td>Unit is performing ZERO calibration procedure initiated remotely through the COM ports or digital control inputs.</td>
</tr>
</tbody>
</table>

1 Only Appears on units with Z/S valve or I2S options
2 The revision of the analyzer firmware is displayed following the word SETUP, e.g., SETUP c.4

Finally, the various CAL modes allow calibration of the analyzer. Because of its importance, this mode is described separately in Chapter 7.

6.2. Sample Mode

This is the analyzer's standard operating mode. In this mode, the instrument is analyzing H2S and calculating concentrations.

6.2.1. Test Functions

A series of test functions is available at the front panel while the analyzer is in SAMPLE mode. These parameters provide information about the present operating status of the instrument and are useful during troubleshooting (Section 11.1.2). They can also be recorded in one of the iDAS channels (Section 6.11) for data analysis. To view the test functions, press one of the `<TST TST>` keys repeatedly in either direction.
Table 6-2: Test Functions Defined

<table>
<thead>
<tr>
<th>DISPLAY</th>
<th>PARAMETER</th>
<th>UNITS</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE</td>
<td>Range</td>
<td>PPB, PPM, UGM & MGM</td>
<td>The full scale limit at which the reporting range of the analyzer’s ANALOG OUTPUTS are currently set. THIS IS NOT the physical range of the instrument. IF IND or AUTO Range modes have been selected, two RANGE functions will appear, one for each range.</td>
</tr>
<tr>
<td></td>
<td>Range1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2S STB¹</td>
<td>Stability</td>
<td>mV</td>
<td>Standard deviation of O₃ Concentration readings. Data points are recorded every ten seconds. The calculation uses the last 25 data points.</td>
</tr>
<tr>
<td>PRES</td>
<td>Sample Pressure</td>
<td>in-Hg-A</td>
<td>The current pressure of the sample gas as it enters the sample chamber, measured between the H₂S and Auto-Zero valves.</td>
</tr>
<tr>
<td>SAMP FL</td>
<td>Sample Flow</td>
<td>cm³/min (cc/m)</td>
<td>The flow rate of the sample gas through the sample chamber. This value is not measured but calculated from the sample pressure.</td>
</tr>
<tr>
<td>PMT</td>
<td>PMT Signal</td>
<td>mV</td>
<td>The raw output voltage of the PMT.</td>
</tr>
<tr>
<td>NORM PMT</td>
<td>NORMALIZED PMT Signal</td>
<td>mV</td>
<td>The output voltage of the PMT after normalization for auto-zero offset and temperature/pressure compensation (if activated).</td>
</tr>
<tr>
<td>UV LAMP</td>
<td>Source UV Lamp Intensity</td>
<td>mV</td>
<td>The output voltage of the UV reference detector.</td>
</tr>
<tr>
<td>LAMP RATIO</td>
<td>UV Source lamp ratio</td>
<td>%</td>
<td>The current output of the UV reference detector divided by the reading stored in the CPU’s memory from the last time a UV Lamp calibration was performed.</td>
</tr>
<tr>
<td>STR. LGT</td>
<td>Stray Light</td>
<td>ppb</td>
<td>The offset due to stray light recorded by the CPU during the last zero-point calibration performed.</td>
</tr>
<tr>
<td>DRK PMT</td>
<td>Dark PMT</td>
<td>mV</td>
<td>The PMT output reading recorded the last time the UV source lamp shutter was closed.</td>
</tr>
<tr>
<td>DRK LMP</td>
<td>Dark UV Source Lamp</td>
<td>mV</td>
<td>The UV reference detector output reading recorded the last time the UV source lamp shutter was closed.</td>
</tr>
<tr>
<td>H2S SLOPE¹</td>
<td>H₂S measurement Slope</td>
<td>-</td>
<td>The sensitivity of the instrument as calculated during the last calibration activity. The slope parameter is used to set the span calibration point of the analyzer.</td>
</tr>
<tr>
<td></td>
<td>H₂S measurement Offset</td>
<td>-</td>
<td>The overall offset of the instrument as calculated during the last calibration activity. The offset parameter is used to set the zero point of the analyzer response.</td>
</tr>
<tr>
<td>HVPS</td>
<td>- -</td>
<td>V</td>
<td>The PMT high voltage power supply.</td>
</tr>
<tr>
<td>RCELL TEMP</td>
<td>Sample Chamber Temp</td>
<td>°C</td>
<td>The current temperature of the sample chamber.</td>
</tr>
<tr>
<td>BOX TEMP</td>
<td>Box Temperature</td>
<td>°C</td>
<td>The ambient temperature of the inside of the analyzer case.</td>
</tr>
<tr>
<td>PMT TEMP</td>
<td>Pmt Temperature</td>
<td>°C</td>
<td>The current temperature of the PMT.</td>
</tr>
<tr>
<td>IZS TEMP¹</td>
<td>Izs Temperature¹</td>
<td>°C</td>
<td>The current temperature of the internal zero/span option. Only appears when IZS option is enabled</td>
</tr>
<tr>
<td>CONV TEMP</td>
<td>H₂S → SO₂ Converter Temperature</td>
<td>°C</td>
<td>The current temperature of the catalytic converter that changes the H₂S present in the sample gas into SO₂.</td>
</tr>
<tr>
<td>TEST²</td>
<td>Test Signal²</td>
<td>mV</td>
<td>Signal of a user-defined test function on output channel A4.</td>
</tr>
<tr>
<td>TIME</td>
<td>Clock Time</td>
<td>hh:mm:ss</td>
<td>The current day time for iDAS records and calibration events.</td>
</tr>
</tbody>
</table>

¹Shown as they appear when analyzer is in H₂S mode. In SO₂ mode appear as **SO₂ STB**, **SO₂ OFFS** & **SO₂ SLOPE**. In multigas mode, both versions appear.
To view the TEST Functions press the following Key sequence:

1 Only appears if IZS option is installed.
2 Only appears if analog output A4 is actively reporting a test function.
3 Shown as they appear when analyzer is in H2S mode. In SO2 mode appear as SO2 STB, SO2 OFFS & SO2 SLOPE. In multigas mode, both versions appear.

A value of “XXXX” displayed for any of the TEST functions indicates an out-of-range reading or the analyzer’s inability to calculate it.

All pressure measurements are represented in terms of absolute pressure. Absolute, atmospheric pressure is 29.92 in-Hg-A at sea level. It decreases about 1 in-Hg per 300 m gain in altitude. A variety of factors such as air conditioning and passing storms can cause changes in the absolute atmospheric pressure.
6.2.2. Warning Messages

The most common instrument failures will be reported as a warning on the analyzer’s front panel and through the COM ports. Section 11.1.1 explains how to use these messages to troubleshoot problems. Section 3.2.3 shows how to view and clear warning messages. Table 6-3 lists all warning messages for the current version of software.

Table 6-3: List of Warning Messages

<table>
<thead>
<tr>
<th>MESSAGE</th>
<th>MEANING</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOG CAL WARNING</td>
<td>The instruments A/D circuitry or one of its analog outputs is not calibrated.</td>
</tr>
<tr>
<td>AZERO WRN XXX.X MV</td>
<td>The reading taken during the auto-zero cycle is outside of specified limits. The value XXX.X indicates the auto-zero reading at the time of the warning.</td>
</tr>
<tr>
<td>BOX TEMP WARNING</td>
<td>The temperature inside the M6200E chassis is outside the specified limits.</td>
</tr>
<tr>
<td>CANNOT DYN SPAN</td>
<td>Remote span calibration failed while the dynamic span feature was set to turned on</td>
</tr>
<tr>
<td>CANNOT DYN ZERO</td>
<td>Remote zero calibration failed while the dynamic zero feature was set to turned on</td>
</tr>
<tr>
<td>CONFIG INITIALIZED</td>
<td>Configuration was reset to factory defaults or was erased.</td>
</tr>
<tr>
<td>CONV TEMP WARNING</td>
<td>The temperature of the H₂S → SO₂ catalytic converter is outside its optimal operating range.</td>
</tr>
<tr>
<td>DARK CAL WARNING</td>
<td>Dark offset above limit specified indicating that too much stray light is present in the sample chamber.</td>
</tr>
<tr>
<td>DATA INITIALIZED</td>
<td>iDAS data storage was erased.</td>
</tr>
<tr>
<td>FRONT PANEL WARN</td>
<td>Firmware is unable to communicate with the front panel.</td>
</tr>
<tr>
<td>HVPS WARNING</td>
<td>High voltage power supply for the PMT is outside of specified limits.</td>
</tr>
<tr>
<td>IZS TEMP WARNING</td>
<td>On units with IZS options installed: The permeation tube temperature is outside of specified limits.</td>
</tr>
<tr>
<td>PMT DET WARNING</td>
<td>PMT detector output outside of operational limits.</td>
</tr>
<tr>
<td>PMT TEMP WARNING</td>
<td>PMT temperature is outside of specified limits.</td>
</tr>
<tr>
<td>RCELL PRESS WARN</td>
<td>Sample chamber pressure is outside of specified limits.</td>
</tr>
<tr>
<td>RCELL TEMP WARNING</td>
<td>Sample chamber temperature is outside of specified limits.</td>
</tr>
<tr>
<td>REAR BOARD NOT DET</td>
<td>The CPU is unable to communicate with the motherboard.</td>
</tr>
<tr>
<td>RELAY BOARD WARN</td>
<td>The firmware is unable to communicate with the relay board.</td>
</tr>
<tr>
<td>SAMPLE FLOW WARN</td>
<td>The flow rate of the sample gas is outside the specified limits.</td>
</tr>
<tr>
<td>SAMPLE PRESS WARN</td>
<td>Sample pressure outside of operational parameters.</td>
</tr>
<tr>
<td>SYSTEM RESET</td>
<td>The computer was rebooted.</td>
</tr>
<tr>
<td>UV LAMP WARNING</td>
<td>The UV lamp intensity measured by the reference detector reading too low or too high</td>
</tr>
</tbody>
</table>
To view and clear warning messages

![Diagram showing warning messages](image)

Figure 6-3 Viewing and Clearing M6200E WARNING Messages

6.3. Calibration Mode

Pressing the **CAL** key switches the M6200E into multi-point calibration mode. In this mode, the user can calibrate the instrument or check the instruments calibration with the use of calibrated zero or span gases.

If the instrument includes either the zero/span valve option or IZS option, the display will also include **CALZ** and **CALS** keys. Pressing either of these keys also puts the instrument into multipoint calibration mode.

- The **CALZ** key is used to initiate a calibration of the zero point.
- The **CALS** key is used to calibrate the span point of the analyzer. It is recommended that this span calibration is performed at 90% of full scale of the analyzer’s currently selected reporting range.

Because of their critical importance and complexity, calibration operations are described in detail in Chapter 7 of this manual. Information related to performing zero/span, zero/span/shutoff and IZS valve options, see Section 5.4.

6.3.1. SETUP – PASS: Calibration Password Security

The M6200E calibration functions may be password protected for to prevent inadvertent adjustments. When the calibration password has been enabled using the **PASS** menu item found under the Setup Menu (see below), the system will prompt the user for a password anytime **CAL**, **CALZ**, **CALS** activated.
The default status of the calibration password is **OFF**. To enable the calibration password press:

If the calibration password (101) is enabled, the following keypad sequence will be required to enter one of the calibration modes:
6.4. Setup Mode

The **SETUP** mode contains a variety of choices that are used to configure the analyzer’s hardware and software features, perform diagnostic procedures, gather information on the instrument’s performance and configure or access data from the internal data acquisition system (iDAS). For a visual representation of the software menu trees, refer to Appendix A-1.

The areas access under the Setup mode are:

Table 6-4: Primary Setup Mode Features and Functions

<table>
<thead>
<tr>
<th>MODE OR FEATURE</th>
<th>KEYPAD LABEL</th>
<th>DESCRIPTION</th>
<th>MANUAL SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Analyzer Configuration</td>
<td>CFG</td>
<td>Lists key hardware and software configuration information</td>
<td>6.5</td>
</tr>
<tr>
<td>Auto Cal Feature</td>
<td>ACAL</td>
<td>Used to set up and operate the AutoCal feature. Only appears if the analyzer has one of the internal valve options installed</td>
<td>7.9</td>
</tr>
<tr>
<td>Internal Data Acquisition (iDAS)</td>
<td>DAS</td>
<td>Used to set up the iDAS system and view recorded data</td>
<td>6.11</td>
</tr>
<tr>
<td>Analog Output Reporting Range Configuration</td>
<td>RNGE</td>
<td>Used to configure the output signals generated by the instruments Analog outputs.</td>
<td>6.7</td>
</tr>
<tr>
<td>Calibration Password Security</td>
<td>PASS</td>
<td>Turns the calibration password feature ON/OFF</td>
<td>6.3.1</td>
</tr>
<tr>
<td>Internal Clock Configuration</td>
<td>CLK</td>
<td>Used to Set or adjust the instrument’s internal clock</td>
<td>6.6</td>
</tr>
<tr>
<td>Advanced SETUP features</td>
<td>MORE</td>
<td>This button accesses the instruments secondary setup menu</td>
<td>See Table 6-5</td>
</tr>
</tbody>
</table>

Table 6-5: Secondary Setup Mode Features and Functions

<table>
<thead>
<tr>
<th>MODE OR FEATURE</th>
<th>KEYPAD LABEL</th>
<th>DESCRIPTION</th>
<th>MANUAL SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>External Communication Channel Configuration</td>
<td>COMM</td>
<td>Used to set up and operate the analyzer’s various external I/O channels including RS-232; RS 485, modem communication and/or Ethernet access.</td>
<td>6.10 & 6.12</td>
</tr>
<tr>
<td>System Status Variables</td>
<td>VARS</td>
<td>Used to view various variables related to the instruments current operational status</td>
<td>6.8</td>
</tr>
<tr>
<td>System Diagnostic Features</td>
<td>DIAG</td>
<td>Used to access a variety of functions that are used to configure, test or diagnose problems with a variety of the analyzer’s basic systems</td>
<td>6.9</td>
</tr>
</tbody>
</table>

NOTE

Any changes made to a variable during one of the following procedures is not acknowledged by the instrument until the ENTR Key is pressed.

If the EXIT key is pressed before the ENTR key, the analyzer will beep, alerting the user that the newly entered value has not been accepted.
6.4.1. SETUP Mode Password Security

Whenever the Model 6200E’s **SETUP** mode is activated the instrument will prompt the user to enter a security password. The default password is **818**. This allows access to all of the instrument’s basic functions and operating modes as well as some of its more powerful diagnostic tools and variables.

The analyzer will automatically insert **818** into the password prompt field. Simply press **ENTR** to proceed.

Other password levels exist allowing access to special diagnostic tools and variables used only for specific and rarely needed troubleshooting and adjustment procedures. They may be made available as needed by Teledyne Analytical Instruments’ Customer Service department.

6.5. SETUP – CFG: Viewing the Analyzer’s Configuration Information

Pressing the CFG key displays the instrument configuration information. This display lists the analyzer model, serial number, firmware revision, software library revision, CPU type and other information. Use this information to identify the software and hardware when contacting customer service. Special instrument or software features or installed options may also be listed here.
6.6. SETUP – CLK: Setting the Internal Time-of-Day Clock

The M6200E has a built-in clock for the AutoCal timer, Time TEST function, and time stamps on COM port messages and iDAS data entries. To set the time-of-day, press:

```
SETUP X.X
TIME-OF-DAY CLOCK
TIME  DATE
EXIT

SETUP X.X
PRIMARY SETUP MENU
CFG  DAS  RNGE  PASS  CLK  MORE  EXIT

SETUP X.X
TIME-OF-DAY CLOCK
TIME  DATE
EXIT

Enter Current Date-of-Year
SETUP X.X
DATE: 01-JAN-02
0 1    JAN    0 2
ENTR  EXIT

Enter Current Time-of-Day
SETUP X.X
TIME: 12:00
1 2 : 0 0
ENTR  EXIT

 SETUP X.X
TIME-OF-DAY CLOCK
EXIT

SETUP X.X
PRIMARY SETUP MENU
CFG  DAS  RNGE  PASS  CLK  MORE  EXIT

EXIT returns to the main SAMPLE display
```
In order to compensate for CPU clocks which run fast or slow, there is a variable to speed up or slow down the clock by a fixed amount every day. To change this variable, press:

SAMPLE

RANGE = 500.0 PPB

H2S = XXX.X

< TST TST > CAL

SAMPLE

ENTER SETUP PASS : 818

8 1 8

ENTR

EXIT

SETUP X.X

PRIMARY SETUP MENU

CFG

DAS

RNGE

PASS

CLK

MORE

EXIT

SETUP X.X

SECONDARY SETUP MENU

COMM

VARS

DIAG

EXIT

SETUP X.X

0) MEASURE_MODE=H2S

NEXT

JUMP

EDIT

PRNT

EXIT

SETUP X.X

1) DAS_HOLD_OFF=15.0 Minutes

PREV

NEXT

JUMP

EDIT

PRNT

EXIT

Continue to press **NEXT** until …

SETUP X.X

8) CLOCK_ADJ=0 Sec/Day

PREV

JUMP

EDIT

PRNT

EXIT

SETUP X.X

CLOCK_ADJ=0 Sec/Day

PREV

NEXT

JUMP

EDIT

PRNT

EXIT

Enter sign and number of seconds per day the clock gains (-) or loses (+).

SETUP X.X

8) CLOCK_ADJ=0 Sec/Day

PREV

NEXT

JUMP

EDIT

PRNT

EXIT

3x **EXIT** returns to the main **SAMPLE** display.
6.7. SETUP – RNGE: Analog Output Reporting Range Configuration

6.7.1. Available Analog Output Signals

The analyzer has three active analog output signals, accessible through a connector on the rear panel.

![Analog Output Connector Key](image)

All three outputs can be configured either at the factory or by the user for full scale outputs of 0.1 VDC, 1VDC, 5VDC or 10VDC. Additionally A1 and A2 may be equipped with optional 0-20 mADC current loop drivers and configured for any current output within that range (e.g. 0-20, 2-20, 4-20, etc.). The user may also adjust the signal level and scaling of the actual output voltage or current to match the input requirements of the recorder or datalogger (See Section 6.9.4.3 & 6.9.4.5).

In its basic configuration, the A1 and A2 channels of the M6200E output a signal that is proportional to the H2S concentration of the sample gas. Several operating modes are available which allow them to be slaved together (SNGL Mode, see Section 6.7.4 or AUTO mode, see section 6.7.6) or operate independently (IND mode, see Section 6.7.5) The user may also select between a variety of reporting range spans as well:

EXAMPLE:

A1 OUTPUT: Output Signal = 0-5 VDC representing 0-1000 ppm concentration values

A2 OUTPUT: Output Signal = 0 – 10 VDC representing 0-500 ppm concentration values.
6.7.2. Physical Range versus Analog Output Reporting Ranges

The M6200E UV Fluorescence H₂S Analyzer has two hardware physical ranges that cover H₂S concentrations between 0 and 20,000 ppb. The low range is 0 to 2,000 ppb, while the high range is 0 to 20,000 ppb. The proper physical range is determined by the software to include the maximum measurement concentration selected by the user. Once properly calibrated, the analyzer’s front panel will accurately report concentrations along the entire span of its 0 and 20,000 ppb physical range.

Because, most applications use only a small part of the analyzer’s two physical ranges, the width of the Model 6200E’s physical range can create data resolution problems for most analog recording devices. For example, in an application where the expected concentration of SOₓ is typically less than 500 ppb, the full scale of expected values is only 0.25% of the instrument’s 20,000 ppb physical range. Unmodified, the corresponding output signal would also be recorded across only 0.25% of the range of the recording device.

The M6200E solves this problem by allowing the user to select a scaled reporting range for the analog outputs that only includes that portion of the physical range relevant to the specific application. Only the reporting range of the analog outputs is scaled, the physical range of the analyzer and the readings displayed on the front panel remain unaltered.

6.7.3. Reporting Range Modes

The M6200E provides three analog output range modes to choose from. The actual signals output on the two analog signal channels depends on whether or not the analyzer includes a SO₂/H₂S multigas measurement option and if so which measurement mode is selected.
• Single range (SNGL) mode: This mode sets a single maximum range for the analog output. If single range is selected (see Section 6.7.4) both outputs are slaved together and will represent the same measurement span (e.g. 0-50 ppm), however their electronic signal levels may be configured differently (e.g. 0-10 VDC vs. 0-.1 VDC – See Section 6.9.4.1). In SO2/H2S multigas measurement mode, although the two inputs are measuring different gases, the two measurements scales are identical.

Independent range (IND) mode: This mode allows the A1 and A2 outputs to be configured with different measurement spans (see Section 6.7.5) as well as separate electronic signal levels (see Section 6.9.4.1) and, if the instrument is equipped with the SO2/H2S multigas measurement option, different gas measurements.

• Auto range (AUTO) mode: As in single range mode, both outputs are slaved together and will represent the same measurement span, however this mode gives the analyzer the ability switch to automatically switch between the two user selected ranges (High and Low). This switching occurs dynamically as the concentration value fluctuates.

High/low range status is output via the External Digital I/O Status Bits (see Section 6.12.1.1).

To select the Analog Output Range Type press:
6.7.4. Single Range mode (SNGL)

The default range mode for the analyzer is single range, in which all analog concentration outputs are set to the same reporting range. This reporting range can be set to any value between 5.0 ppb and 20 000 ppb.

While the two outputs always have the same reporting range, the span and scaling of their electronic signals may also be configured for different differently (e.g., \(A1 = 0-10\) V; \(A2 = 0-0.1\) V).

To select **SNGLE** range mode and to set the upper limit of the range, press:

```
SAMPLE RANGE = 500.0 PPB H2S =XXX.X
< TST TST > CAL
```

```
SAMPLE ENTER SETUP PASS : 818
8 1 8 ENTER EXIT
```

```
SETUP C.3 PRIMARY SETUP MENU
CFG DAS RNGE PASS CLK MORE EXIT
```

```
SETUP C.3 RANGE CONTROL MENU
MODE SET UNIT EXIT
```

```
SETUP C.3 RANGE MODE: SNGL
SNGL IND AUTO ENTER EXIT
```

```
SETUP C.3 RANGE CONTROL MENU
MODE SET UNIT EXIT
```

```
SETUP C.3 RANGE: 500.0 Conc
0 0 5 0 0 .0 ENTER EXIT
```

```
EXIT x 2 returns to the main SAMPLE display
```

NOTE

On analyzers with the multigas option activated (see section 5.5 and Section 6.8.1) the concentration value will switch back and forth between from “H2S=XXX.X” to “SO2=XXX.X” depending on which gas is currently being measured.
6.7.5. Independent Range Mode (IND)

Selecting independent range mode allows the A1 and A2 outputs to be configured with different measurement ranges. The analyzer software calls these two ranges LOW and HIGH. The LOW range setting corresponds with the analog output labeled A1 on the rear panel of the instrument. The HIGH range setting corresponds with the A2 output. While the software names these two ranges LOW and HIGH, they do not have to be configured that way.

Also, in this mode the RANGE Test function displayed on the front panel during SAMPLE mode will be replaced by two separate functions, RANGE1 & RANGE2.

- **LOW** range = RANGE1 = Range value for output A1 = 0-1500 ppb H2S.
- **HIGH** range = RANGE2 = Range value for output A2 = 0-500 ppb H2S.

For M6200E’s configured to measure both SO2 and H2S in multigas measurement mode:

- **LOW** range = RANGE1 = Range value for output A1 = 0-1500 ppm SO2.
- **HIGH** range = RANGE2 = Range value for output A2 = 0-1000 ppm H2S.

To select the independent reporting range mode and set the upper measurement limits for the two outputs, press:

```
SAMPLE RANGE = 500.0 PPB H2S =XXX.X
< TST TST > CAL SETUP
SAMPLE ENTER SETUP PASS : 818 8 1 8 ENTR EXIT
SETUP.XX PRIMARY SETUP MENU CFG DAS RNGE PASS CLK MORE EXIT
SETUP.XX RANGE CONTROL MENU MODE SET UNIT EXIT
SETUP.XX RANGE MODE: SINGL SNGL IND AUTO ENTR EXIT
SETUP.XX RANGE MODE: DUAL SNGL IND AUTO ENTR EXIT
SETUP.XX RANGE CONTROL MENU MODE SET UNIT EXIT
SETUP.XX LOW RANGE: 500.0 Conc 0 0 1 0 0 .0 ENTR EXIT
SETUP.XX HIGH RANGE: 500.0 Conc 0 0 5 0 0 .0 ENTR EXIT
SETUP.XX RANGE CONTROL MENU MODE SET UNIT EXIT
```

Toggles the Numerical Keys to set the upper limit of each range.

NOTE

In INDEPENDENT range mode the two reporting ranges have separate slopes and offsets for computing concentration and MUST be independently calibrated.
NOTE

On analyzers with the multigas option activated (see section 5.5 and Section 6.8.1) the titles displayed on the instruments front panel during the previous operation appear as:

LOW range appears as SO2 RANGE
high range appears as H2S RANGE

As the instrument switches from H2S mode to SO2 mode and back, only the reporting range and analog output associated with the gas currently being measured will be active. The reporting range and analog output for the gas no being measured will continue to report the last valid reading.

6.7.6. Auto Range Mode (AUTO)

In AUTO range mode, the analyzer automatically switches the reporting range between two user-defined ranges (low and high). The unit will switch from low range to high range when the H2S concentration exceeds 98% of the low range span. The unit will return from high range back to low range once both the H2S concentration falls below 75% of the low range span.

When set up to measure a single gas (H2S or SO2), in AUTO Range mode the instrument reports the same data in the same range on both the A1 and A2 outputs and automatically switches both outputs between ranges as described above.

To select auto range mode and set the upper span limits for the high and low ranges, press the following keystroke sequence.
NOTE
On analyzers with the multigas option activated (see section 5.5 and Section 6.8.1) the concentration value will switch back and forth between from "H2S=XXX.X" to "SO2=XXX.X" depending on which gas is currently being measured.

ALSO
The analyzer will switch between the HIGH and LOW analog reporting ranges whenever the concentration level of the gas being currently measured fulfills the trigger criteria listed at the beginning of this section.

6.7.7. Range Units

The M6200E can display concentrations in parts per billion (10^9 mols per mol, PPB), parts per million (10^6 mols per mol, PPM), micrograms per cubic meter (µg/m³, UG) or milligrams per cubic meter (mg/m³, MG). Changing units affects all of the display, analog outputs, COM port and iDAS values for all reporting ranges regardless of the analyzer’s range mode.

To change the concentration units:

Select the preferred concentration unit.

NOTE
Concentrations displayed in mg/m³ and µg/m³ use standard temperature and pressure (STP). The conversion factors from volumetric to mass units used in the M6200E are:

SO₂: ppb x 2.86 = µg/m³; ppm x 2.86 = mg/m³
H₂S: ppb x 1.52 = µg/m³; ppm x 1.52 = mg/m³
6.7.8. Dilution Ratio

The dilution ratio is a software option that allows the user to compensate for any dilution of the sample gas before it enters the sample inlet. Using the dilution ratio option is a 4-step process:

1. Select reporting range units: Follow the procedure in Section 6.7.7.

2. Select the range: Use the procedures in Section 6.7.3 – 6.7.6. Make sure that the **SPAN** value entered is the maximum expected concentration of the undiluted calibration gas and that the span gas is either supplied through the same dilution inlet system as the sample gas or has an appropriately lower actual concentration. For example, with a dilution set to 100, a 1 ppm gas can be used to calibrate a 100 ppm sample gas if the span gas is not routed through the dilution system. On the other hand, if a 100 ppm span gas is used, it needs to pass through the same dilution steps as the sample gas.

3. Set the dilution factor as a gain (e.g., a value of 20 means 20 parts dilutent and 1 part of sample gas):

 Toggle these keys to set the dilution factor.
 This is the number by which the analyzer will multiply the H₂S concentrations of the gas passing through the reaction cell.

The analyzer multiplies the measured gas concentrations with this dilution factor and displays the result.

NOTE

Once the above settings have been entered, the instrument needs to be recalibrated using one of the methods discussed in Chapter 7.
6.8. SETUP – VARS: Using the Internal Variables

The M6200E has several user-adjustable software variables, which define certain operational parameters. Usually, these variables are automatically set by the instrument’s firmware, but can be manually re-defined using the VARS menu. Table 6-6 lists all variables that are available within the 818 password protected level.

Table 6-6: Variable Names (VARS) Revision A.1

<table>
<thead>
<tr>
<th>NO.</th>
<th>VARIABLE</th>
<th>DESCRIPTION</th>
<th>ALLOWED VALUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>MEASURE_MODE</td>
<td>Selects the gas measurement mode in which the instrument is to operate. SO₂ only, H₂S only or dual gas measurement of SO₂ and H₂S simultaneously. Dual gas mode requires that a special switching optional be installed (see Section 5.5 and 6.8.1).</td>
<td>SO₂; SO₂ – H₂S; H₂S</td>
</tr>
<tr>
<td>1</td>
<td>DAS_HOLD_OFF</td>
<td>Changes the internal data acquisition system (iDAS) hold-off time, which is the duration when data are not stored in the iDAS because the software considers the data to be questionable. That is the case during warm-up or just after the instrument returns from one of its calibration modes to SAMPLE mode. DAS_HOLD_OFF can be disabled entirely in each iDAS channel.</td>
<td>Can be between 0.5 and 20 minutes Default=15 min.</td>
</tr>
<tr>
<td>2</td>
<td>TPC_ENABLE</td>
<td>Enables or disables the temperature and pressure compensation (TPC) feature.</td>
<td>ON/OFF</td>
</tr>
<tr>
<td>3</td>
<td>RCELL_SET</td>
<td>Sets the sample chamber temperature. Increasing or decreasing this temperature will increase or decrease the rate at which SO₂* decays into SO₂ .(Section 10.1.2). Do not adjust this setting unless under the direction of Teledyne Analytical Instruments customer service personnel.</td>
<td>30°C - 70°C Default= 50°C</td>
</tr>
<tr>
<td>4</td>
<td>IZS_SET</td>
<td>Sets the IZS option temperature. Increasing or decreasing this temperature will increase or decrease the permeation rate of the IZS source (Section 5.4.3).</td>
<td>30°C - 70°C Default= 50°C</td>
</tr>
<tr>
<td>5</td>
<td>DYN_ZERO</td>
<td>Dynamic zero automatically adjusts offset and slope of the H₂S response when performing a zero point calibration during an AutoCal (Chapter 7).</td>
<td>ON/OFF</td>
</tr>
<tr>
<td>6</td>
<td>DYN_SPAN</td>
<td>Dynamic span automatically adjusts slope and slope of the H₂S response when performing a zero point calibration during an AutoCal (Chapter 7). Note that the DYN_ZERO and DYN_SPAN features are not allowed for applications requiring EPA equivalency.</td>
<td>ON/OFF</td>
</tr>
<tr>
<td>7</td>
<td>CONC_PRECISION</td>
<td>Allows the user to set the number of significant digits to the right of the decimal point display of concentration and stability values.</td>
<td>AUTO, 1, 2, 3, 4 Default=AUTO</td>
</tr>
<tr>
<td>8</td>
<td>CLOCK_ADJ</td>
<td>Adjusts the speed of the analyzer’s clock. Choose the + sign if the clock is too slow, choose the - sign if the clock is too fast.</td>
<td>-60 to +60 s/day</td>
</tr>
</tbody>
</table>
To access and navigate the VARS menu, use the following key sequence.

1. Use the following key sequence to access the VARS menu:

 SETUP X.X

 NEXT JUMP EDIT PRNT EXIT

2. See Section 6.8.1 for instructions regarding this setting.

3. DO NOT change these set-points unless specifically instructed to by T-API Customer Service.

4. SETUP X.X

 MEASURE MODE=H2S

 NEXT JUMP EDIT PRNT EXIT

5. SETUP X.X

 DAS_HOLD_OFF=15.0 Minutes

 NEXT JUMP EDIT PRNT EXIT

6. SETUP X.X

 TPC_ENABLE=ON

 NEXT JUMP EDIT PRNT EXIT

7. SETUP X.X

 RCELL_SET=50.0 DegC

 PREV NEXT JUMP EDIT PRNT EXIT

8. SETUP X.X

 IZS_SET=50.0 DegC

 PREV NEXT JUMP EDIT PRNT EXIT

9. SETUP X.X

 CLOCK_ADJ=0 Sec/Day

 PREV NEXT JUMP EDIT PRNT EXIT

10. SETUP X.X

 CLOCK_ADJ=0 Sec/Day

 PREV NEXT JUMP EDIT PRNT EXIT

11. SETUP X.X

 CONC PRECISION : 3

 AUTO 0 1 2 3

 PREV NEXT JUMP EDIT PRNT EXIT
6.8.1. Setting the Gas Measurement Mode

If the M6200E is equipped with the appropriate SO₂ switching valves and software, several gas measurement modes are available. The instrument can be set to measure H₂S, SO₂, or cycle between both gases (see Section 10.3.2). To select one of these three measurement modes, press:

- **H₂S** mode is the default mode for the M101E
- Press the PREV and NEXT buttons to move back and forth between gas modes
6.9. SETUP – DIAG: Using the Diagnostics Functions

A series of diagnostic tools is grouped together under the SETUPÆMOREÆDIAG menu. As these parameters are dependent on firmware revision (see Menu Tree A-5 in Appendix A). The individual parameters, however, are explained in more detail in the following section, indicated in Table 6-7. These tools can be used in a variety of troubleshooting and diagnostic procedures and are referred to in many places of the maintenance and trouble-shooting sections.

Table 6-7: M6200E Diagnostic (DIAG) Functions

<table>
<thead>
<tr>
<th>DIAGNOSTIC FUNCTION AND MEANING</th>
<th>FRONT PANEL MODE INDICATOR</th>
<th>SECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGNAL I/O: Allows observation of all digital and analog signals in the instrument. Allows certain digital signals such as valves and heaters to be toggled ON and OFF.</td>
<td>DIAG I/O</td>
<td>6.9.2</td>
</tr>
<tr>
<td>ANALOG OUTPUT: When entered, the analyzer performs an analog output step test. This can be used to calibrate a chart recorder or to test the analog output accuracy.</td>
<td>DIAG AOUT</td>
<td>6.9.3</td>
</tr>
<tr>
<td>ANALOG I/O CONFIGURATION: Analog input/output parameters are available for viewing and configuration.</td>
<td>DIAG AIO</td>
<td>6.9.4</td>
</tr>
<tr>
<td>OPTIC TEST When activated, the analyzer performs an optic test, which turns on an LED located inside the sensor module near the PMT (Fig. 10-15). This diagnostic tests the response of the PMT without having to supply span gas.</td>
<td>DIAG OPTIC</td>
<td>6.9.5</td>
</tr>
<tr>
<td>ELECTRICAL TEST: When activated, the analyzer performs an electric test, which generates a current intended to simulate the PMT output to verify the signal handling and conditioning of the PMT preamp board.</td>
<td>DIAG ELEC</td>
<td>6.9.6</td>
</tr>
<tr>
<td>LAMP CALIBRATION: The analyzer records the current voltage output of the UV source reference detector. This value is used by the CPU to calculate the lamp ration used in determining the H2S/SO2 concentration (see 10.2.2)</td>
<td>DIAG LAMP</td>
<td>6.9.7</td>
</tr>
<tr>
<td>PRESSURE CALIBRATION: The analyzer records the current output of the sample gas pressure sensor. This value is used by the CPU to compensate the H2S concentration when the TPC feature is enabled.</td>
<td>DIAG PCAL</td>
<td>6.9.8</td>
</tr>
<tr>
<td>FLOW CALIBRATION: This function is used to calibrate the gas flow output signals of sample gas and ozone supply. These settings are retained when exiting DIAG.</td>
<td>DIAG FCAL</td>
<td>6.9.9</td>
</tr>
<tr>
<td>TEST CHAN OUTPUT: Configures the A4 analog output channel.</td>
<td>DIAG TCHN</td>
<td>6.9.10</td>
</tr>
</tbody>
</table>
6.9.1. Accessing the Diagnostic Features

To access the **DIAG** functions press the following keys:

```
SAMPLE  RANGE = 500.0 PPB  H2S =XXX.XX
<TST TST > CAL SETUP

ENTER SETUP PASS: 818
8 1 8 ENTR EXIT

SETUP X.X PRIMARY SETUP MENU
CFG  DAS  RNGE  PASS  CLK  MORE  EXIT

SETUP X.X SECONDARY SETUP MENU
COMM  VARS  DIAG  EXIT

DIAG SIGNAL I/O
NEXT  ENTR  EXIT

DIAG ANALOG OUTPUT
PREV  NEXT  ENTR  EXIT

DIAG ANALOG I/O CONFIGURATION
PREV  NEXT  ENTR  EXIT

DIAG OPTIC TEST
PREV  NEXT  ENTR  EXIT

DIAG ELECTRICAL TEST
PREV  NEXT  ENTR  EXIT

DIAG LAMP CALIBRATION
PREV  NEXT  ENTR  EXIT

DIAG PRESSURE CALIBRATION
PREV  NEXT  ENTR  EXIT

DIAG FLOW CALIBRATION
PREV  NEXT  ENTR  EXIT

DIAG TEST CHAN OUTPUT
PREV  ENTR  EXIT
```

6.9.2. Signal I/O

The signal I/O diagnostic mode allows to review and change the digital and analog input/output functions of the analyzer. See Appendix A-4 for a complete list of the parameters available for review under this menu.

NOTE

Any changes of signal I/O settings will remain in effect only until the signal I/O menu is exited. Exceptions are the ozone generator override and the flow sensor calibration, which remain as entered when exiting.
To enter the signal I/O test mode, press:

SAMPLE SETUP TST CAL

8 1 8

EXIT

SETUP

SETUP X.X

PRIMARY SETUP MENU

CFG DAS RNGE PASS CLK MORE EXIT

SETUP X.X

SECONDARY SETUP MENU

COMM VARS DIAG EXIT

EXIT returns to the main SAMPLE display.

6.9.3. Analog Output Step Test

This test can be used to check the accuracy and proper operation of the analog outputs. The test forces all four analog output channels to produce signals ranging from 0% to 100% of the full scale range in 20% increments. This test is useful to verify the operation of the data logging/recording devices attached to the analyzer.

To begin the Analog Output Step Test press:

SAMPLE RANGE = 500.0 PPB H2S = XXX.X < TST TST > CAL

SAMPLE ENTER SETUP PASS : 818

8 1 8

ENTR EXIT

SETUP X.X

PRIMARY SETUP MENU

CFG DAS RNGE PASS CLK MORE EXIT

SETUP X.X

SECONDARY SETUP MENU

COMM VARS DIAG EXIT

EXIT

SETUP X.X

SECONDARY SETUP MENU

COMM VARS DIAG EXIT

EXIT

returns to the main SAMPLE display.

PRESSING the PRINT key will send a formatted printout to the serial port and can be captured with a computer or other output device.

Pressing the PRINT key will send a formatted printout to the serial port and can be captured with a computer or other output device.

Example:

Enter 12 to Jump to 12 ST_CONC_VALID

Exit to return to the DIAG menu

PRESSING the key under "0%" while performing the test will pause the test at that level. Brackets will appear around the value: example: [20%] Pressing the same key again will resume the test.

Performing

| Analog Output Step Test | 0% - 100% |

PRESSING the key under "0%" while performing the test will pause the test at that level. Brackets will appear around the value: example: [20%] Pressing the same key again will resume the test.

Pressing the PRINT key will send a formatted printout to the serial port and can be captured with a computer or other output device.

Example:

Enter 12 to Jump to 12 ST_CONC_VALID

Exit to return to the DIAG menu

PRESSING the key under "0%" while performing the test will pause the test at that level. Brackets will appear around the value: example: [20%] Pressing the same key again will resume the test.

Pressing the PRINT key will send a formatted printout to the serial port and can be captured with a computer or other output device.

Example:

Enter 12 to Jump to 12 ST_CONC_VALID

Exit to return to the DIAG menu

PRESSING the key under "0%" while performing the test will pause the test at that level. Brackets will appear around the value: example: [20%] Pressing the same key again will resume the test.

Pressing the PRINT key will send a formatted printout to the serial port and can be captured with a computer or other output device.
6.9.4. Analog I/O Configuration

Table 6-8 lists the analog I/O functions that are available in the M6200E.

<table>
<thead>
<tr>
<th>SUB MENU</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AOUTS CALIBRATED:</td>
<td>Shows the status of the analog output calibration (YES/NO) and initiates a calibration of all analog output channels.</td>
</tr>
<tr>
<td>CONC_OUT_1</td>
<td>Sets the basic electronic configuration of the A1 analog output (H2S). There are three options:</td>
</tr>
<tr>
<td></td>
<td>• RANGE: Selects the signal type (voltage or current loop) and full scale level of the output.</td>
</tr>
<tr>
<td></td>
<td>• REC_OFS: Allows to set a voltage offset (not available when RANGE is set to current loop.</td>
</tr>
<tr>
<td></td>
<td>• AUTO_CAL: Performs the same calibration as AOUT CALIBRATED, but on this one channel only.</td>
</tr>
<tr>
<td></td>
<td>NOTE: Any change to RANGE or REC_OFS requires recalibration of this output.</td>
</tr>
<tr>
<td>CONC_OUT_2</td>
<td>Same as for CONC_OUT_1 but for analog channel 2 (H2S)</td>
</tr>
<tr>
<td>TEST OUTPUT</td>
<td>Same as for CONC_OUT_1 but for analog channel 4 (TEST)</td>
</tr>
<tr>
<td>AIN CALIBRATED</td>
<td>Shows the calibration status (YES/NO) and initiates a calibration of the analog to digital converter circuit on the motherboard.</td>
</tr>
</tbody>
</table>

To configure the analyzer’s four analog outputs, set the electronic signal type of each channel and calibrate the outputs. This consists of:

Selecting an output type (voltage or current, if an optional current output driver has been installed) and the signal level that matches the input requirements of the recording device attached to the channel, see Sections 6.9.4.1.

Calibrating the output channel. This can be done automatically or manually for each channel, see Sections 6.9.4.2 and 6.9.4.3.

Adding a bipolar recorder offset to the signal, if required (Section 6.9.4.4.)

In its standard configuration, the analyzer’s outputs can be set for the following DC voltages. Each range is usable from -5% to + 5% of the nominal range.

<table>
<thead>
<tr>
<th>RANGE</th>
<th>MINIMUM OUTPUT</th>
<th>MAXIMUM OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-0.1 V</td>
<td>-5 mV</td>
<td>+105 mV</td>
</tr>
<tr>
<td>0-1 V</td>
<td>-0.05 V</td>
<td>+1.05 V</td>
</tr>
<tr>
<td>0-5 V</td>
<td>-0.25 V</td>
<td>+5.25 V</td>
</tr>
<tr>
<td>0-10 V</td>
<td>-0.5 V</td>
<td>+10.5 V</td>
</tr>
</tbody>
</table>

The default offset for all ranges is 0 VDC.
The following DC current output limits apply to the current loop modules:

Table 6-10: Analog Output Current Loop Range

<table>
<thead>
<tr>
<th>RANGE</th>
<th>MINIMUM OUTPUT</th>
<th>MAXIMUM OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-20 mA</td>
<td>0 mA</td>
<td>20 mA</td>
</tr>
</tbody>
</table>

These are the physical limits of the current loop modules, typical applications use 2-20 or 4-20 mA for the lower and upper limits. Please specify desired range when ordering this option. The default offset for all ranges is 0 mA.

Pin assignments for the output connector at the rear panel of the instrument are shown in Table 6-11.

Table 6-11: Analog Output Pin Assignments

<table>
<thead>
<tr>
<th>PIN</th>
<th>ANALOG OUTPUT</th>
<th>VOLTAGE SIGNAL</th>
<th>CURRENT SIGNAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A1</td>
<td>V Out</td>
<td>I Out +</td>
</tr>
<tr>
<td>2</td>
<td>A1</td>
<td>Ground</td>
<td>I Out -</td>
</tr>
<tr>
<td>3</td>
<td>A2</td>
<td>V Out</td>
<td>I Out +</td>
</tr>
<tr>
<td>4</td>
<td>A2</td>
<td>Ground</td>
<td>I Out -</td>
</tr>
<tr>
<td>5</td>
<td>A3</td>
<td>Not Used</td>
<td>Not Used</td>
</tr>
<tr>
<td>7</td>
<td>A4</td>
<td>V Out</td>
<td>not available</td>
</tr>
<tr>
<td>8</td>
<td>A4</td>
<td>Ground</td>
<td>not available</td>
</tr>
</tbody>
</table>

See Figure 3-2 for the location of the analog output connector on the instrument's rear panel.
6.9.4.1. Analog Output Signal Type and Range Span Selection

To select an output signal type (DC Voltage or current) and level for one output channel, activate the ANALOG I/O CONFIGURATION MENU (see Section 6.9.1) then press:

FROM ANALOG I/O CONFIGURATION MENU

DIAG ANALOG I/O CONFIGURATION
PREV NEXT EXIT

DIAG AIO ANALOG I/O CONFIGURATION
< SET SET> CAL EDIT EXIT

Press SET> to select the analog output channel to be configured. Press EDIT to continue

DIAG AIO CONC_OUT_2: 5V, CAL
< SET SET> EDIT EXIT

DIAG AIO CONC_OUT_2 RANGE: 5V
< SET SET> EDIT EXIT

Pressing ENTR records the new setting and returns to the previous menu. Pressing EXIT ignores the new setting and returns to the previous menu.

These keys set the signal level and type of the selected channel

DIAG AIO OUTPUT RANGE: 5V
0.1V 1V 5V 10V CURR ENTR EXIT

DIAG AIO OUTPUT RANGE: 10V
0.1V 1V 5V 10V CURR ENTR EXIT

6.9.4.2. Analog Output Calibration Mode

The analog outputs can be calibrated automatically or manually. In its default mode, the instrument is configured for automatic calibration of all channels. Manual calibration should be used for the 0.1V range or in cases where the outputs must be closely matched to the characteristics of the recording device. Outputs configured for automatic calibration can be calibrated as a group or individually. Calibration of the analog outputs needs to be carried out on first startup of the analyzer (performed in the factory as part of the configuration process) or whenever re-calibration is required.
To calibrate the outputs as a group, activate the **ANALOG I/O CONFIGURATION MENU** (see Section 6.9.1), then press:

STARTING FROM DIAGNOSTIC MENU
(see Section 6.9.1)

DIAG
ANALOG I/O CONFIGURATION
PREV NEXT ENTR EXIT

DIAG AIO AOUTS CALIBRATED: NO
< SET SET> CAL EXIT

DIAG AUTO CALIBRATING CONC_OUT_1 AUTO CALIBRATING CONC_OUT_2 AUTO CALIBRATING TEST_OUTPUT

If AutoCal has been turned off for any channel, the message for that channel will be similar to:

NOT AUTO CAL CONC_OUT_1

Exit to return to the I/O configuration menu

To automatically calibrate an single analog channel, activate the **ANALOG I/O CONFIGURATION MENU** (see Section 6.9.1), then press:

DIAG AIO AOUTS CALIBRATED: YES
< SET SET> CAL EXIT

If any of the channels have not been calibrated this message will read NO.

Exit at any time to return to the main DIAG menu.
Press SET> to select the Analog Output channel to be configured. Then Press EDIT to continue.
To select manual output calibration for a particular channel, activate the **ANALOG I/O CONFIGURATION MENU** (see Section 6.9.1), then press:

- Press SET> to select the analog output channel to be configured. Then press EDIT to continue.
- Toggles the auto cal mode ON/ OFF for this analog output channel only.

Now the analog output channels should either be automatically calibrated or they should be set to manual calibration, which is described next.

6.9.4.3. Manual Analog Output Calibration and Voltage Adjustment

For highest accuracy, the voltages of the analog outputs can be manually calibrated. Calibration is done through the instrument software with a voltmeter connected across the output terminals (Figure 6-5). Adjustments are made using the front panel keys by setting the zero-point first and then the span-point (Table 6-12).

The software allows this adjustment to be made in 100, 10 or 1 count increments.

Table 6-12: Voltage Tolerances for Analog Output Calibration

<table>
<thead>
<tr>
<th>Full Scale</th>
<th>Zero Tolerance</th>
<th>Span Voltage</th>
<th>Span Tolerance</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1 VDC</td>
<td>±0.0005V</td>
<td>90 mV</td>
<td>±0.001V</td>
</tr>
<tr>
<td>1 VDC</td>
<td>±0.001V</td>
<td>900 mV</td>
<td>±0.001V</td>
</tr>
<tr>
<td>5 VDC</td>
<td>±0.002V</td>
<td>4500 mV</td>
<td>±0.003V</td>
</tr>
<tr>
<td>10 VDC</td>
<td>±0.004V</td>
<td>4500 mV</td>
<td>±0.006V</td>
</tr>
</tbody>
</table>

NOTE

Outputs configured for 0.1V full scale should always be calibrated manually.
Figure 6-5: Setup for Calibrating Analog Outputs

To make these adjustments, the AOUT auto-calibration feature must be turned off (Section 6.9.4.2). Activate the ANALOG I/O CONFIGURATION MENU (see Section 6.9.1), then press:

1. Press SET> to select the analog output channel to be configured:
 - DISPLAYED AS = CHANNEL
 - CONC_OUT_1 = A1
 - CONC_OUT_2 = A2
 - TEST OUTPUT = A4

2. Press < SET > to select the CONC_OUT_1 channel for configuration:
 - CONC_OUT_1 RANGE: 5V
 - CONC_OUT_1 REC OFS: 0 mV
 - CONC_OUT_1 AUTO CAL: OFF
 - CONC_OUT_1 CALIBRATED: NO

3. Use the < UP >, < DOWN >, < U100 >, and < DN10 > keys to adjust the voltage at the output of the analyzer and/or the input of the recording device to match the value in the upper right-hand corner of the display to the tolerance listed in Table 6-10.

4. The concentration display will not change. Only the voltage reading of your voltmeter will change.

5. Press SET> to save the new setting. EXIT ignores the new setting, while ENT> accepts the new setting.

6. If AutoCal is ON, go to Section 6.7.3.
6.9.4.4. Analog Output Offset Adjustment

Some analog signal recorders require that the zero signal is significantly different from the baseline of the recorder in order to record slightly negative readings from noise around the zero point. This can be achieved in the M6200E by defining a zero offset, a small voltage (e.g., 10% of span), which can be added to the signal of individual output channels by activating the ANALOG I/O CONFIGURATION MENU (see Section 6.9.1), then pressing:

- Press SET> to select the analog output channel to be configured. Then press EDIT to continue.
- Pressing ENTR accepts the new setting and returns to the previous menu. Pressing EXIT ignores the new setting and returns to the previous menu.

6.9.4.5. Current Loop Output Adjustment

A current loop option is available and can be installed as a retrofit for each of the analog outputs of the analyzer (Section 5-2). This option converts the DC voltage analog output to a current signal with 0-20 mA output current. The outputs can be scaled to any set of limits within that 0-20 mA range. However, most current loop applications call for either 2-20 mA or 4-20 mA range. All current loop outputs have a +5% over-range. Ranges with the lower limit set to more than 1 mA (e.g., 2-20 or 4-20 mA) also have a -5% under-range.

To switch an analog output from voltage to current loop after installing the current output printed circuit assembly, follow the instructions in Section 6.9.4.1 and select CURR from the list of options on the “Output Range” menu.

Adjusting the signal zero and span values of the current loop output is done by raising or lowering the voltage of the respective analog output. This proportionally raises or lowers the current produced by the current loop option.

Similar to the voltage calibration, the software allows this current adjustment to be made in 100, 10 or 1 count increments. Since the exact current increment per voltage count varies from output.
To output and from instrument to instrument, you will need to measure the change in the current with a current meter placed in series with the output circuit (Figure 6-6).

![Diagram](image)

Figure 6-6: Setup for Calibrating Current Outputs

NOTE

Do not exceed 60 V between current loop outputs and instrument ground.

To adjust the zero and span values of the current outputs, activate the **ANALOG I/O CONFIGURATION MENU** (see Section 6.9.1), then press:
If a current meter is not available, an alternative method for calibrating the current loop outputs is to connect a 250 $\Omega \pm 1\%$ resistor across the current loop output. Using a voltmeter, connected across the resistor, follow the procedure above but adjust the output to the following values:

Table 6-13: Current Loop Output Calibration with Resistor

<table>
<thead>
<tr>
<th>FULL SCALE</th>
<th>VOLTAGE FOR 2-20 MA (measured across resistor)</th>
<th>VOLTAGE FOR 4-20 MA (measured across resistor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>0.5 V</td>
<td>1.0 V</td>
</tr>
<tr>
<td>100%</td>
<td>5.0 V</td>
<td>5.0 V</td>
</tr>
</tbody>
</table>

6.9.4.6. AIN Calibration

This is the sub-menu to conduct the analog input calibration. This calibration should only be necessary after major repair such as a replacement of CPU, motherboard or power supplies. Activate the ANALOG I/O CONFIGURATION MENU (see Section 6.9.1), then press:
STARTING FROM ANALOG I/O CONFIGURATION MENU

Exit at any time to return to the main DIAG menu

Continue pressing SET? until …

DIAG AIO
AIN CALIBRATED: NO
< SET SET> CAL EXIT

Instrument calibrates automatically

DIAG AIO
CALIBRATING A/D ZERO
CALIBRATING A/D SPAN

DIAG AIO
AIN CALIBRATED: YES
< SET SET> CAL EXIT

Exit to return to the ANALOG I/O CONFIGURATION MENU
6.9.5. Optic Test

The optic test function tests the response of the PMT sensor by turning on an LED located in the cooling block of the PMT (Fig. 10-15). The analyzer uses the light emitted from the LED to test its photo-electronic subsystem, including the PMT and the current to voltage converter on the pre-amplifier board. To make sure that the analyzer measures only the light coming from the LED, the analyzer should be supplied with zero air. The optic test should produce a PMT signal of about 2000±1000 mV. To activate the electrical test press the following key sequence.

![Diagram of test sequence]

NOTE

This is a coarse test for functionality and not an accurate calibration tool. The resulting PMT signal can vary significantly over time and also changes with low-level calibration.
6.9.6. Electrical Test

The electrical test function creates a current, which substitutes the PMT signal, and feeds it into the preamplifier board. This signal is generated by circuitry on the pre-amplifier board itself and tests the filtering and amplification functions of that assembly along with the A/D converter on the motherboard. It does not test the PMT itself. The electrical test should produce a PMT signal of about 2000 ±1000 mV.

To activate the electrical test press the following keys.
6.9.7. Lamp Calibration

An important factor in accurately determining H₂S concentration, once the H₂S is converted to SO₂, is the amount of UV light available to transform the SO₂ into SO₂⁺ (see Section 10.1.1 and 10.1.2). The model 6200E compensates for variations in the intensity of the available UV light by adjusting the H₂S concentration calculation using a ratio (LAMP RATIO) that results from dividing the current UV lamp (UV LAMP) intensity by a value stored in the CPU’s memory (LAMP_CAL).

Both LAMP Ratio and UV Lamp are test functions viewable from the instrument’s front panel.

To cause the analyzer to measure and record a value for LAMP_CAL, press.

The value displayed is the current output of the UV source reference detector.

ENTR accepts the new value.

EXIT ignores the new value.
6.9.8. Pressure Calibration

A sensor at the exit of the sample chamber continuously measures the pressure of the sample gas. This data is used to compensate the final H₂S concentration calculation for changes in atmospheric pressure when the instrument’s TPC feature (see Section 10.7.3) is turned on and is stored in the CPU’s memory as the test function \textit{PRES} (also viewable via the front panel).

To cause the analyzer to measure and record a value for \textit{PRES}, press.
6.9.9. Flow Calibration

The flow calibration allows the user to adjust the values of the sample flow rates as they are displayed on the front panel and reported through COM ports to match the actual flow rate measured at the sample inlet. This does not change the hardware measurement of the flow sensors, only the software calculated values.

To carry out this adjustment, connect an external, sufficiently accurate flow meter to the sample inlet (see Section 11.5.2 for more details). Once the flow meter is attached and is measuring actual gas flow, press:

![Diagram of flow calibration process]

- Connect an external flow meter to the sample inlet.
- Press NEXT until FLOW CALIBRATION appears.
- Enter the actual flow rate measured by the flow meter.
- Press ENTR to accept the new value. EXIT ignores the new value.

The value displayed is the current output of the UV source reference detector.
6.9.10. Test Channel Output

When activated, output channel A4 can be used to report one of the test functions viewable from the SAMPLE mode display. To activate the A4 channel and select a test function, follow this key sequence:

```
SAMPLE           RANGE = 500.0 PPB           H2S =XXX.X
< TST  TST >  CAL

SAMPLE           ENTER SETUP PASS : 818
8        1        8
ENTR

SETUP X.X       PRIMARY SETUP MENU
CFG  DAS  RNGE  PASS  CLK  MORE  EXIT

SETUP X.X       SECONDARY SETUP MENU
COMM  VARS  DIAG  EXIT

DIAG           SIGNAL I/O
NEXT  ENTR  EXIT

DIAG           ANALOG OUTPUT
PREV  NEXT  ENTR  EXIT
```

```
Continue to press NEXT until ...

DIAG           TEST CHAN OUTPUT
PREV  NEXT  ENTR  EXIT

DIAG TCHN       TEST CHANNEL: NONE
NEXT  ENTR  EXIT

DIAG TCHN       TEST CHANNEL: PMT READING
NEXT  PREV  ENTR  EXIT

Press PREV or NEXT to move through the list of available parameters (Table 6-13)
Press ENTR to select the displayed parameter activating the test channel.
Press EXIT to return to the DIAG menu
```

Table 6-14: Test Parameters Available for Analog Output A4

<table>
<thead>
<tr>
<th>TEST CHANNEL</th>
<th>TEST PARAMETER RANGE 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>NONE</td>
<td>Test channel is turned off</td>
</tr>
<tr>
<td>PMT READING</td>
<td>0-5000 mV</td>
</tr>
<tr>
<td>UV READING</td>
<td>0-5000 mV</td>
</tr>
<tr>
<td>SAMPLE PRESSURE</td>
<td>0-40 in-Hg-A</td>
</tr>
<tr>
<td>SAMPLE FLOW</td>
<td>0-1000 cm³/min</td>
</tr>
<tr>
<td>RCELL TEMP</td>
<td>0-70°C</td>
</tr>
<tr>
<td>CHASSIS TEMP</td>
<td>0-70°C</td>
</tr>
<tr>
<td>IZS TEMP</td>
<td>0-70°C</td>
</tr>
<tr>
<td>PMT TEMP</td>
<td>0-50°C</td>
</tr>
<tr>
<td>CHASSIS TEMP</td>
<td>0-70°C</td>
</tr>
<tr>
<td>HVPS VOLTAGE</td>
<td>0-5000 V</td>
</tr>
</tbody>
</table>

1 This refers to the voltage range of the parameter and not the output signal of the test channel.
Once a TEST function is selected, the instrument begins to report a signal on the A4 output and adds TEST= to the list of test functions viewable on the display (just before the TIME display).

6.10. SETUP – COMM: Setting Up the Analyser’s Communication Ports

The M6200E is equipped with two serial communication ports located on the rear panel (Figure 3-2). Both ports operate similarly and give the user the ability to communicate with, issue commands to, and receive data from the analyzer through an external computer system or terminal. By default, both ports operate on the RS-232 protocol.

The COM1 port can also be configured to operate in single or RS-232 multidrop mode (option 62; see Section 5.6.2 and 6.10.7).

The COM2 port, can be configured for standard RS-232 operation, half-duplex RS-485 communication or for access via an LAN by installing the Teledyne Analytical Instruments Ethernet interface card (option 63; see Section 5.6.3 and 6.10.6).

A code-activated switch (CAS), can also be used on either port to connect typically between 2 and 16 send/receive instruments (host computer(s) printers, dataloggers, analyzers, monitors, calibrators, etc.) into one communications hub. Contact Teledyne Analytical Instruments sales for more information on CAS systems.

6.10.1. Analyzer ID

Each type of Teledyne Analytical Instruments analyzer is configured with a default ID code. The default ID code for all M6200E analyzers is 101. The ID number is only important if more than one analyzer is connected to the same communications channel such as when several analyzers are on the same Ethernet LAN (see Section 6.10.6); in a RS-232 multidrop chain (see Section 6.10.7) or operating over a RS-485 network (see Section 6.10.4). If two analyzers of the same model type are used on one channel, the ID codes of one or both of the instruments needs to be changed so that they are unique to the instruments. To edit the instrument’s ID code, press:
The ID can be any 4 digit number and can also be used to identify analyzers in any number of ways (e.g. location numbers, company asset number, etc.)
6.10.2. COM Port Default Settings

As received from the factory, the analyzer is set up to emulate a DCE or modem, with pin 3 of the DB-9 connector designated for receiving data and pin 2 designated for sending data.

- **COM1**: RS-232 (fixed), DB-9 male connector.
 - **Baud rate**: 19200 bits per second (baud).
 - **Data Bits**: 8 data bits with 1 stop bit.
 - **Parity**: None.
- **COM2**: RS-232 (configurable), DB-9 female connector.
 - **Baud rate**: 115000 bits per second (baud).
 - **Data Bits**: 8 data bits with 1 stop bit.
 - **Parity**: None.

CAUTION

Cables that appear to be compatible because of matching connectors may incorporate internal wiring that make the link inoperable. Check cables acquired from sources other than Teledyne Analytical Instruments for pin assignments before using.

6.10.3. RS-232 COM Port Cable Connections

In its default configuration, the M6200E analyzer has two available RS-232 Com ports accessible via 2 DB-9 connectors on the back panel of the instrument. The COM1 connector is a male DB-9 connector and the COM2 is a female DB9 connector.

![Back Panel connector Pin-Outs for COM1 & COM2 in RS-232 mode.](image)

Figure 6-7: Back Panel connector Pin-Outs for COM1 & COM2 in RS-232 mode.
The signals from these two connectors are routed from the motherboard via a wiring harness to two 10-pin connectors on the CPU card, CN3 (COM1) and CN4 (COM2).

![Diagram of CPU connector Pin-Outs for COM1 & COM2 in RS-232 mode.]

Teledyne Analytical Instruments offers two mating cables, one of which should be applicable for your use.

- Part number WR000077, a DB-9 female to DB-9 female cable, 6 feet long. Allows connection of COM1 with the serial port of most personal computers. Also available as Option 60 (Section 5.6.1).
- Part number WR000024, a DB-9 female to DB-25 male cable. Allows connection to the most common styles of modems (e.g. Hayes-compatible) and code activated switches.

Both cables are configured with straight-through wiring and should require no additional adapters.

To assist in properly connecting the serial ports to either a computer or a modem, there are activity indicators just above the COM1 port. Once a cable is connected between the analyzer and a computer or modem, both the red and green LEDs should be on. If the lights for COM 1 are not lit, use small switch on the rear panel to switch it between DTE and DCE modes (see Section 6.10.5). If both LEDs are still not illuminated, check the cable for proper wiring.

The two LEDs located over COM2 are currently deactivated. If you have problems getting COM2 to activate, it may be necessary to install a null-modem cable (contact customer service for information).

6.10.4. RS-485 Configuration of COM2

As delivered from the factory, COM2 is configured for RS-232 communications. This port can be reconfigured for operation as a non-isolated, half-duplex RS-485 port capable of supporting up to 32 instruments with a maximum distance between the host and the furthest instrument being 4000 feet. If you require full-duplex or isolated operation, please contact Teledyne Analytical Instruments Customer Service.

- To reconfigure COM2 as an RS-285 port set switch 6 of SW1 to the ON position (see Figure 6-9).
• The RS-485 port can be configured with or without a 150 Ω termination resistor. To include the resistor, install jumper at position JP3 on the CPU board (see Figure 6-9). To configure COM2 as an un-terminated RS-485 port leave JP3 open.

Figure 6-9: CPU card Locations of RS-232/485 Switches, Connectors and Jumpers
When COM2 is configured for RS-485 operation the port uses the same female DB-9 connector on the back of the instrument as when Com2 is configured for RS-232 operation, however, the pin assignments are different.

Figure 6-10: Back Panel connector Pin-Outs for COM2 in RS-485 mode.

The signal from this connector is routed from the motherboard via a wiring harness to a 6-pin connectors on the CPU card, CN5.

Figure 6-11: CPU connector Pin-Outs for COM2 in RS-485 mode.

6.10.5. DTE and DCE Communication

RS-232 was developed for allowing communications between data terminal equipment (DTE) and data communication equipment (DCE). Basic terminals always fall into the DTE category whereas modems are always considered DCE devices. The difference between the two is the pin assignment of the Data Receive and Data Transmit functions.

- DTE devices receive data on pin 2 and transmit data on pin 3.
- DCE devices receive data on pin 3 and transmit data on pin 2.
To allow the analyzer to be used with terminals (DTE), modems (DCE) and computers (which can be either), a switch mounted below the serial ports on the rear panel allows the user to set the configuration of COM1 for one of these two modes. This switch exchanges the receive and transmit lines on COM1 emulating a cross-over or null-modem cable. The switch has no effect on COM2.

6.10.6. Ethernet Card Configuration

When equipped with the optional Ethernet interface, the analyzer can be connected to any standard 10BaseT Ethernet network via low-cost network hubs, switches or routers. The interface operates as a standard TCP/IP device on port 3000. This allows a remote computer to connect through the internet to the analyzer using APIcom, terminal emulators or other programs.

The firmware on board the Ethernet card automatically sets the communication modes and baud rate (115 200 kBaud) for the **COM2** port. Once the Ethernet option is installed and activated, the **COM2** submenu is replaced by a new submenu, **INET**. This submenu is used to manage and configure the Ethernet interface with your LAN or Internet Server(s).

The card has four LEDs that are visible on the rear panel of the analyzer, indicating its current operating status.

Table 6-15: Ethernet Status Indicators

<table>
<thead>
<tr>
<th>LED</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNK (green)</td>
<td>ON when connection to the LAN is valid.</td>
</tr>
<tr>
<td>ACT (yellow)</td>
<td>Flickers on any activity on the LAN.</td>
</tr>
<tr>
<td>TxD (green)</td>
<td>Flickers when the RS-232 port is transmitting data.</td>
</tr>
<tr>
<td>RxD (yellow)</td>
<td>Flickers when the RS-232 port is receiving data.</td>
</tr>
</tbody>
</table>

6.10.6.1. Ethernet Card COM2 Communication Modes and Baud Rate

The firmware on board the Ethernet card automatically sets the communication modes for the COM2 port. The baud rate is also automatically set at 115 200 kBaud.

6.10.6.2. Configuring the Ethernet Interface Option using DHCP

The Ethernet option for your M6200E uses Dynamic Host Configuration Protocol (DHCP) to automatically configure its interface with your LAN. This requires your network servers also be running DHCP. The analyzer will do this the first time you turn the instrument on after it has been physically connected to your network. Once the instrument is connected and turned on it will appear as an active device on your network without any extra set up steps or lengthy procedures.

Should you need to, the following Ethernet configuration properties are viewable via the analyzer’s front panel.
Table 6-16: LAN/Internet Configuration Properties

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>DEFAULT STATE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DHCP STATUS</td>
<td>On</td>
<td>This displays whether the DHCP is turned ON or OFF.</td>
</tr>
<tr>
<td>INSTRUMENT IP ADDRESS</td>
<td>Configured by DHCP</td>
<td>This string of four packets of 1 to 3 numbers each (e.g. 192.168.76.55.) is the address of the analyzer itself.</td>
</tr>
<tr>
<td>GATEWAY IP ADDRESS</td>
<td>Configured by DHCP</td>
<td>A string of numbers very similar to the Instrument IP address (e.g. 192.168.76.1.) that is the address of the computer used by your LAN to access the Internet.</td>
</tr>
<tr>
<td>SUBNET MASK</td>
<td>Configured by DHCP</td>
<td>Also a string of four packets of 1 to 3 numbers each (e.g. 255.255.252.0) that defines that identifies the LAN the device is connected to. All addressable devices and computers on a LAN must have the same subnet mask. Any transmissions sent devices with different assumed to be outside of the LAN and are routed through gateway computer onto the Internet.</td>
</tr>
<tr>
<td>TCP PORT</td>
<td>3000</td>
<td>This number defines the terminal control port by which the instrument is addressed by terminal emulation software, such as Internet or Teledyne Analytical Instruments' APICOM.</td>
</tr>
<tr>
<td>HOST NAME</td>
<td>101E</td>
<td>The name by which your analyzer will appear when addressed from other computers on the LAN or via the Internet. While the default setting for all Teledyne Analytical Instruments M6200E analyzers is “M6200E” the host name may be changed to fit customer needs.</td>
</tr>
</tbody>
</table>

1 Do not change the setting for this property unless instructed to by Teledyne Analytical Instruments Customer Service personnel.
NOTE

It is a good idea to check these settings the first time you power up your analyzer after it has been physically connected to the LAN/Internet to make sure that the DHCP has successfully downloaded the appropriate information from your network server(s).

If the gateway IP, instrument IP and the subnet mask are all zeroes (e.g. “0.0.0.0”), the DHCP was not successful.

You may have to manually configure the analyzer’s Ethernet properties. See your network administrator.

To view the above properties, press:
6.10.6.3. Manually Configuring the Network IP Addresses

There are several circumstances when you may need to manually configure the interface settings of the analyzer’s Ethernet card. The **INET** sub-menu may also be used to edit the Ethernet card’s configuration properties:

- Your LAN is not running a DHCP software package,
- The DHCP software is unable to initialize the analyzer’s interface;
- You wish to program the interface with a specific set of IP addresses that may not be the ones automatically chosen by DHCP.

Editing the Ethernet Interface properties is a two step process.

STEP 1: Turn DHCP OFF: While DHCP is turned **ON**, the ability to manually set **INSTRUMENT IP**, **GATEWAY IP** and **SUBNET MASK** is disabled.
STEP 2: Configure the **INSTRUMENT IP**, **GATEWAY IP** and **SUBNET MASK** addresses by pressing:

Internet Configuration Keypad Functions

<table>
<thead>
<tr>
<th>KEY</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>[0]</td>
<td>Press this key to cycle through the range of numerals and available characters ("0 – 9", ",", ".")</td>
</tr>
<tr>
<td><CH CH></td>
<td>Moves the cursor one character left or right.</td>
</tr>
<tr>
<td>DEL</td>
<td>Deletes a character at the cursor location.</td>
</tr>
<tr>
<td>ENTR</td>
<td>Accepts the new setting and returns to the previous menu.</td>
</tr>
<tr>
<td>EXIT</td>
<td>Ignores the new setting and returns to the previous menu.</td>
</tr>
</tbody>
</table>

Some keys only appear as needed.

From Step 1 above)

SETUP XX

DHCP: OFF

SET> EDIT EXIT

SETUP XX

INST IP: 0.0.0.000

<SET EDIT EXIT

SETUP XX

GATEWAY IP: 0.0.0.000

<SET EDIT EXIT

SETUP XX

SUBNET MASK: 255.255.255.0

<SET EDIT EXIT

SETUP XX

TCP PORT 3000

<SET EDIT EXIT

Pressing **EXIT** from any of the above display menus causes the Ethernet option to reinitialize its internal interface firmware.

SETUP XX

INITIALIZING INET 0%

INITIALIZING INET 100%

SETUP XX

INITIALIZATION SUCCEEDED

SETUP XX

INITIALIZATION FAILED

SETUP XX

COMMUNICATIONS MENU

ID INET COM1 EXIT

Contact your IT Network Administrator
6.10.6.4. Changing the Analyzer’s HOSTNAME

The **HOSTNAME** is the name by which the analyzer appears on your network. The default name for all Teledyne Analytical Instruments Model 6200E analyzers is **101E**. To change this name (particularly if you have more than one Model 6200E analyzer on your network), press.

```plaintext
SETUP X.X
DHCP: ON
SET> EDIT EXIT
Continue pressing SET> UNTIL ...

SETUP X.X
HOSTNAME: 101E
<SET EDIT EXIT

SETUP X.X
HOSTNAME: [M]101E
<CH CH> INS DEL [?] ENTR EXIT
Use these keys (See Table 6-19) to edit HOSTNAME

SETUP X.X
HOSTNAME: 101E-FIELD1
<SET EDIT EXIT

SETUP X.X
INITIALIZATION SUCCEEDED
SETUP X.X
INITIALIZATION FAILED

SETUP X.X
COMMUNICATIONS MENU
ID INET COM1 EXIT

Contact your IT Network Administrator
```
Table 6-17: Internet Configuration Keypad Functions

<table>
<thead>
<tr>
<th>KEY</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td><CH</td>
<td>Moves the cursor one character to the left.</td>
</tr>
<tr>
<td>CH></td>
<td>Moves the cursor one character to the right.</td>
</tr>
<tr>
<td>INS</td>
<td>Inserts a character before the cursor location.</td>
</tr>
<tr>
<td>DEL</td>
<td>Deletes a character at the cursor location.</td>
</tr>
<tr>
<td>[?]</td>
<td>Press this key to cycle through the range of numerals and characters available for insertion. 0-9, A-Z, space ‘ ~ ! © # $ % ^ & * () - _ = + [] { } < > \ ; : , . / ?</td>
</tr>
<tr>
<td>ENTR</td>
<td>Accepts the new setting and returns to the previous menu.</td>
</tr>
<tr>
<td>EXIT</td>
<td>Ignores the new setting and returns to the previous menu.</td>
</tr>
</tbody>
</table>

Some keys only appear as needed.

6.10.7. Multidrop RS-232 Set Up

The RS-232 multidrop consists of a printed circuit assembly that plugs onto the CN3, CN4, and CN5 connectors of the CPU card (see Figure 6-9) and the cabling to connect it to the analyzer’s motherboard. This PCA includes all circuitry required to enable your analyzer for multidrop operation. It converts the instrument’s COM1 port to multidrop configuration allowing up to eight analyzers to be connected the same I/O port of the host computer.

Because both of the DB9 connectors on the analyzer's back panel are needed to construct the multidrop chain, COM2 is no longer available for separate RS-232 or RS-485 operation, however, with the addition of an Ethernet Option (option 63, see Sections 5.6.3 and 10.6.6) the COM2 port is available for communication over a 10BaseT LAN.

![Figure 6-12: Location of JP2 on RS232-Multidrop PCA (option 62)](image)
Each analyzer in the multidrop chain must have:

- One Teledyne Analytical Instruments option 62 installed.
- One 6’ straight-through, DB9 male → DB9 Female cable (Teledyne Analytical Instruments P/N WR0000101) is required for each analyzer.

To set up the network, for each analyzer:

1. Turn the analyzer on and change its ID code (see Section 6.10.1) to a unique 4-digit number.

2. Remove the top cover (see Section 3.1) of the analyzer and locate JP2 on the multidrop PCA (see Figure 6-12)

3. Make sure that the jumpers are in place connecting pins 9 ↔ 10 and 11 ↔ 12.

4. If the analyzer is to be the last instrument on the chain, make sure a jumper is in place connecting pins 21 ↔ 22.

5. If you are adding an analyzer to the end of an already existing chain, don’t forget to remove JP2, pins 21 ↔ 22 on the multidrop PCA on the analyzer that was previous the last instrument in the chain.

6. Close the instrument.

7. Using straight-through, DB9 male → DB9 Female cables, interconnect the host and the analyzers as shown in Figure 6-13.

NOTE:

Teledyne Analytical Instruments recommends setting up the first link, between the Host and the first analyzer and testing it before setting up the rest of the chain.
Make Sure Jumper between JP2 pins 21 ↔ 22 is installed.

Figure 6-13: RS232-Multidrop PCA Host/Analyzer Interconnect Diagram
6.10.8. COM Port Communication Modes

Each of the analyzer’s serial ports can be configured to operate in a number of different modes, which are listed in Table 6-18 and which can be combined by adding the Mode ID numbers. For example, quiet mode, computer mode and internet-enabled mode would carry a combined mode ID of 1, the standard configuration on the M6200E COM2 port. Note that each COM port needs to be configured independently.

Table 6-18: COM Port Communication modes

<table>
<thead>
<tr>
<th>MODE1</th>
<th>ID</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>QUIET</td>
<td>1</td>
<td>Quiet mode suppresses any feedback from the analyzer (iDAS reports, and warning messages) to the remote device and is typically used when the port is communicating with a computer program such as APICOM. Such feedback is still available but a command must be issued to receive them.</td>
</tr>
<tr>
<td>COMPUTER</td>
<td>2</td>
<td>Computer mode inhibits echoing of typed characters and is used when the port is communicating with a computer program, such as APICOM.</td>
</tr>
<tr>
<td>SECURITY</td>
<td>4</td>
<td>When enabled, the serial port requires a password before it will respond. The only command that is active is the help screen (? CR).</td>
</tr>
<tr>
<td>HESSEN PROTOCOL</td>
<td>16</td>
<td>The Hessen communications protocol is used in some European countries. Teledyne Analytical Instruments part number 02252 contains more information on this protocol.</td>
</tr>
</tbody>
</table>
| E, 7, 1 | 2048 | When turned on this mode switches the COMM port settings from
No parity; 8 data bits; 1 stop bit
to
Even parity; 7 data bits; 1 stop bit |
| RS-485 | 1024 | Configures the COM2 Port for RS-485 communication. RS-485 mode has precedence over multidrop mode if both are enabled. |
| MULTIDROP PROTOCOL | 32 | Multidrop protocol allows a multi-instrument configuration on a single communications channel. Multidrop requires the use of instrument IDs. |
| ENABLE MODEM | 64 | Enables to send a modem initialization string at power-up. Asserts certain lines in the RS-232 port to enable the modem to communicate. |
| ERROR CHECKING | 128 | Fixes certain types of parity errors at certain Hessen protocol installations. |
| XON/XOFF HANDSHAKE | 256 | Enables CTS/RTS style hardwired transmission handshaking. This style of data transmission handshaking is commonly used with modems or terminal emulation protocols as well as by Teledyne Instrument’s APICOM software. |
| HARDWARE HANDSHAKE | 8 | Enables CTS/RTS style hardwired transmission handshaking. This style of data transmission handshaking is commonly used with modems or terminal emulation protocols as well as by Teledyne Instrument’s APICOM software. |
| HARDWARE FIFO | 512 | Improves data transfer rate when on of the COMM ports. |
| COMMAND PROMPT | 4096 | Enables a command prompt when in terminal mode. |

1 Modes are listed in the order in which they appear in the SETUP \rightarrow MORE \rightarrow COMM \rightarrow COM[1 OR 2] \rightarrow MODE menu

2 The default string for this feature is ON. Do not disable unless instructed to by Teledyne Analytical Instruments Customer Service personnel.
Press the following keys to select a communication mode for a one of the COMM Ports, such as the following example where **HESSEN PROTOCOL** mode is enabled:

- **SAMPLE**
- **RANGE = 500.0 PPB**
- **H2S = XXX.X**
- **< TST TST > CAL**

SETUP

- **ENTER SETUP PASS : 818**

SAMPLE

- **ENTRY**

EXIT returns to the previous menu

Select which COM port to configure

- **The sum of the mode IDs of the selected modes is displayed here**

Use PREV and NEXT keys to move between available modes. A mode is enabled by toggling the ON/OFF key.

Continue pressing the NEXT and PREV keys to select any other modes you wish to enable or disable

ENTR key accepts the new settings

EXIT key ignores the new settings
6.10.9. COM Port Baud Rate

To select the baud rate of one of the COM Ports, press:

- Select which COM port to configure.
- Press SET> until you reach COM1 BAUD RATE.
- Use PREV and NEXT keys to move between available baud rates.

Press SET> until you reach COM1 BAUD RATE.

EXIT returns to the previous menu.

EXIT key ignores the new setting.

ENTR key accepts the new setting.
6.10.10. COM Port Testing

The serial ports can be tested for correct connection and output in the `COMM` menu. This test sends a string of 256 'w' characters to the selected COM port. While the test is running, the red LED on the rear panel of the analyzer should flicker.

To initiate the test press the following key sequence.

```
SAMPLE          RANGE = 500.0 PPB          H2S =XXX.X
< TST  TST > CAL

SAMPLE
ENTER SETUP PASS : 818
8        1        8
ENTR
EXIT

SETUP X.X
PRIMARY SETUP MENU
CFG  DAS  RNGE  PASS  CLK
MORE
EXIT

SETUP X.X
SECONDARY SETUP MENU
COMM  VARS  DIAG
EXIT

SETUP X.X
COMMUNICATIONS MENU
ID
COM1
COM2
EXIT

SETUP X.X
COM1 MODE
SET>
EDIT
EXIT

SETUP X.X
COM1 TEST PORT
<SET TEST
EXIT

SETUP X.X
TRANSMITTING TO COM1
<SET TEST
EXIT

EXIT returns to COMM menu
```

6.11. Using the Data Acquisition System (iDAS)

The M6200E analyzer contains a flexible and powerful, internal data acquisition system (iDAS) that enables the analyzer to store concentration and calibration data as well as a host of diagnostic parameters. The iDAS of the M6200E can store up to about one million data points, which can, depending on individual configurations, cover days, weeks or months of valuable measurements. The data are stored in non-volatile memory and are retained even when the instrument is powered off. Data are stored in plain text format for easy retrieval and use in common data analysis programs (such as spreadsheet-type programs).

The iDAS is designed to be flexible, users have full control over the type, length and reporting time of the data. The iDAS permits users to access stored data through the instrument's front panel or its communication ports. Using APICOM, data can even be retrieved automatically to a remote computer for further processing.

The principal use of the iDAS is logging data for trend analysis and predictive diagnostics, which can assist in identifying possible problems before they affect the functionality of the analyzer. The secondary use is for data analysis, documentation and archival in electronic format.

To support the iDAS functionality, Teledyne Analytical Instruments offers APICOM, a program that provides a visual interface for remote or local setup, configuration and data retrieval of the iDAS.
(Section 6.11). The APICOM manual, which is included with the program, contains a more detailed description of the iDAS structure and configuration, which is briefly described in this section.

The M6200E is configured with a basic iDAS configuration, which is enabled by default. New data channels are also enabled by default but each channel may be turned off for later or occasional use. Note that iDAS operation is suspended while its configuration is edited through the front panel. To prevent such data loss, it is recommended to use the APICOM graphical user interface for iDAS changes.

The green SAMPLE LED on the instrument front panel, which indicates the analyzer status, also indicates certain aspects of the iDAS status:

Table 6-19: Front Panel LED Status Indicators for iDAS

<table>
<thead>
<tr>
<th>LED STATE</th>
<th>IDAS STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Off</td>
<td>System is in calibration mode. Data logging can be enabled or disabled for this mode. Calibration data are typically stored at the end of calibration periods, concentration data are typically not sampled, diagnostic data should be collected.</td>
</tr>
<tr>
<td>Blinking</td>
<td>Instrument is in hold-off mode, a short period after the system exits calibrations. IDAS channels can be enabled or disabled for this period. Concentration data are typically disabled whereas diagnostic should be collected.</td>
</tr>
<tr>
<td>On</td>
<td>Sampling normally.</td>
</tr>
</tbody>
</table>

The iDAS can be disabled only by disabling or deleting its individual data channels.

6.11.1. iDAS Structure

The iDAS is designed around the feature of a "record". A record is a single data point of one parameter, stored in one (or more) data channels and generated by one of several triggering events. The entire iDAS configuration is stored in a script, which can be edited from the front panel or downloaded, edited and uploaded to the instrument in form of a string of plain-text lines through the communication ports.

iDAS data are defined by the PARAMETER type and are stored through different triggering EVENTS in data CHANNELS, which relate triggering events to data parameters and define certain operational functions related to the recording and reporting of the data.

6.11.1.1. iDAS Channels

The key to the flexibility of the iDAS is its ability to store a large number of combinations of triggering events and data parameters in the form of data channels. Users may create up to 20 data channels and each channel can contain one or more parameters. For each channel one triggering event is selected and up to 50 data parameters, which can be the same or different between channels. Each data channel has several properties that define the structure of the channel and allow the user to make operational decisions regarding the channel (Table 6-20).
Table 6-20: iDAS Data Channel Properties

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>DESCRIPTION</th>
<th>DEFAULT</th>
<th>SETTING RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAME</td>
<td>The name of the data channel.</td>
<td>"NONE"</td>
<td>Up to 6 letters and digits (more with APICOM, but only the first six are displayed on the front panel).</td>
</tr>
<tr>
<td>TRIGGERING EVENT</td>
<td>The event that triggers the data channel to measure and store its data parameters. See APPENDIX A-5 for a list of available triggering events.</td>
<td>ATIMER</td>
<td>Any allowed event.</td>
</tr>
<tr>
<td>NUMBER AND LIST OF PARAMETERS</td>
<td>A User-configurable list of data types to be recorded in any given channel. See APPENDIX A-5 for a list of available parameters</td>
<td>1 - PMTDET</td>
<td>Any available concentration, temperature, pneumatic or diagnostic parameter.</td>
</tr>
<tr>
<td>REPORT PERIOD</td>
<td>The amount of time between each channel data point.</td>
<td>000:01:00</td>
<td>000:00:01 to 366:23:59 (Days:Hours:Minutes)</td>
</tr>
<tr>
<td>NUMBER OF RECORDS</td>
<td>The number of reports that will be stored in the data file. Once the specified limit has been exceeded, the oldest data are overwritten to make space for new data.</td>
<td>100</td>
<td>1 to 1 million, limited by available storage space.</td>
</tr>
<tr>
<td>RS-232 REPORT</td>
<td>Enables the analyzer to automatically report channel values to the RS-232 ports.</td>
<td>OFF</td>
<td>OFF or ON</td>
</tr>
<tr>
<td>CHANNEL ENABLED</td>
<td>Enables or disables the channel. Provides a convenient means to temporarily disable a data channel.</td>
<td>ON</td>
<td>OFF or ON</td>
</tr>
<tr>
<td>CAL HOLD OFF</td>
<td>Disables sampling of data parameters while instrument is in calibration mode. Note that - when enabled here - there is also a length of the DAS HOLD OFF after calibration mode, which is set in the VARS menu (Section 6.11.2.11.)</td>
<td>OFF</td>
<td>OFF or ON</td>
</tr>
</tbody>
</table>

6.11.1.2. iDAS Parameters

Data parameters are types of data that may be measured and stored by the iDAS. For each Teledyne Analytical Instruments analyzer model, the list of available data parameters is different, fully defined and not customizable. Appendix A-5 lists firmware specific data parameters for the M6200E. The most common parameters are concentrations of measured gases (H₂S, H₂S and NO₂), temperatures of heated zones (converter, sample chamber, box temperature...), pressures and flows of the pneumatic subsystem and other diagnostic measurements as well as calibration data (slope and offset) for each gas.

Most data parameters have associated measurement units, such as mV, ppb, cm³/min, etc., although some parameters have no units. The only units that can be changed are those of the concentration readings according to the SETUP-RANGE settings. Note that the iDAS does not keep track of the unit of each concentration value and iDAS data files may contain concentrations in multiple units if the unit was changed during data acquisition.

Each data parameter has user-configurable functions that define how the data are recorded (Table 6-21).
Table 6-21: iDAS Data Parameter Functions

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>EFFECT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PARAMETER</td>
<td>Instrument-specific parameter name.</td>
</tr>
</tbody>
</table>
| SAMPLE MODE | INST: Records instantaneous reading.
| | AVG: Records average reading during reporting interval.
| | MIN: Records minimum (instantaneous) reading during reporting interval.
| | MAX: Records maximum (instantaneous) reading during reporting interval. |
| PRECISION | Decimal precision of parameter value (0-4). |
| STORE NUM. SAMPLES | OFF: stores only the average (default).
| | ON: stores the average and the number of samples in each average for a parameter. This property is only useful when the AVG sample mode is used. Note that the number of samples is the same for all parameters in one channel and needs to be specified only for one of the parameters in that channel. |

Users can specify up to 50 parameters per data channel (the M6200E provides about 30 parameters). However, the number of parameters and channels is ultimately limited by available memory.

6.11.1.3. iDAS Triggering Events

Triggering events define when and how the iDAS records a measurement of any given data channel. Triggering events are firmware-specific and are listed in Appendix A-5. The most common triggering events are:

- **ATIMER**: Sampling at regular intervals specified by an automatic timer. Most trending information is usually stored at such regular intervals, which can be instantaneous or averaged.

- **EXITZR, EXITSP, SLPCHG** (exit zero, exit span, slope change): Sampling at the end of (irregularly occurring) calibrations or when the response slope changes. These triggering events create instantaneous data points, e.g., for the new slope and offset (concentration response) values at the end of a calibration. Zero and slope values are valuable to monitor response drift and to document when the instrument was calibrated.

- **WARNINGS**: Some data may be useful when stored if one of several warning messages appears. This is helpful for trouble-shooting by monitoring when a particular warning occurred.

6.11.2. Default iDAS Channels

A set of default Data Channels has been included in the analyzer’s software for logging H₂S concentration and certain predictive diagnostic data. These default channels include but are not limited to:

CONC: Samples H₂S concentration at one minute intervals and stores an average every hour with a time and date stamp. Readings during calibration and calibration hold off are not included in the data. By default, the last 800 hourly averages are stored.
PNUMTC: Collects sample flow and sample pressure data at five minute intervals and stores an average once a day with a time and date stamp. This data is useful for monitoring the condition of the pump and critical flow orifice (sample flow) and the sample filter (clogging indicated by a drop in sample pressure) over time to predict when maintenance will be required. The last 360 daily averages (about 1 year) are stored.

CALDAT: Logs new slope and offset every time a zero or span calibration is performed. This Data Channel also records the instrument reading just prior to performing a calibration. **Note:** this Data Channel collects data based on an event (a calibration) rather than a timer. This Data Channel will store data from the last 200 calibrations. This does not represent any specific length of time since it is dependent on how often calibrations are performed. As with all Data Channels, a time and date stamp is recorded for every data point logged.

The Channel Properties. Triggering Events and Data Parameters/Functions for these default channels are:
Figure 6-14: Default iDAS Channels Setup

These default Data Channels can be used as they are, or they can be customized from the front panel to fit a specific application. They can also be deleted to make room for custom user-programmed Data Channels.

Appendix A-5 lists the firmware-specific iDAS configuration in plain-text format. This text file can either be loaded into APICOM and then modified and uploaded to the instrument or can be copied and pasted into a terminal program to be sent to the analyzer.
NOTE

Sending an iDAS configuration to the analyzer through its COM ports will replace the existing configuration and will delete all stored data. Back up any existing data and the iDAS configuration before uploading new settings.

6.11.2.1. Viewing iDAS Data and Settings

iDAS data and settings can be viewed on the front panel through the following keystroke sequence.
6.11.2.2. Editing iDAS Data Channels

IDAS configuration is most conveniently done through the APICOM remote control program. The following list of key strokes shows how to edit using the front panel.

When editing the data channels, the top line of the display indicates some of the configuration parameters. For example, the display line:

0) CONC : ATIMER, 4, 800

translates to the following configuration:

Channel No.: 0
NAME: CONC
TRIGGER EVENT: ATIMER
PARAMETERS: Four parameters are included in this channel
EVENT: This channel is set up to record 800 data points.

To edit the name of a data channel, follow the above key sequence and then press:

FROM THE PREVIOUS KEY SEQUENCE...

SETUP X.X NAME: CONC
<SET SET> EDIT PRINT EXIT

SETUP X.X NAME: CONC
C O N C - - ENTR EXIT

Press each key repeatedly to cycle through the available character set:
0-9, A-Z, space ‘ ’ - ! # $ % ^ & * () - _ = + [] { } < > : ; , . / ?

ENTR accepts the new string and returns to the previous menu.
EXIT ignores the new string and returns to the previous menu.
6.11.2.3. Trigger Events

To edit the list of data parameters associated with a specific data channel, press:

![Diagram of trigger events editing process]

6.11.2.4. Editing iDAS Parameters

Data channels can be edited individually from the front panel without affecting other data channels. However, when editing a data channel, such as during adding, deleting or editing parameters, all data for that particular channel will be lost, because the iDAS can store only data of one format (number of parameter columns etc.) for any given channel. In addition, an iDAS configuration can only be uploaded remotely as an entire set of channels. Hence, remote update of the iDAS will always delete all current channels and stored data.

To modify, add or delete a parameter, follow the instruction shown in section 6.11.2.2 then press:
EDIT DATA PARAMETER MENU

SETUP X.X

0) CONC: ATIMER, 2, 4032, R

PREV NEXT INS DEL EDIT PRINT EXIT

Exits to the main Data Acquisition menu

SETUP X.X

NAME: CONC

<SET SET> EDIT PRINT EXIT

Press SET> key until...

SETUP X.X

PARAMETERS : 2

<SET SET> EDIT PRINT EXIT

SETUP X.X

EDIT PARAMS (DELETE DATA)

YES NO

YES will delete all data in that entire channel.

NO returns to the previous menu and retains all data.

EDIT DATA PARAMETER MENU

SETUP X.X

0) PARAM=S2SCN1, MODE=AVG

PREV NEXT INS DEL EDIT EXIT

Exits to the main Data Acquisition menu

Moves the display between available Parameters

Inserts a new Parameter before the currently displayed Parameter

DELETE DATA

YES NO

YES will delete all data in that entire channel.

NO returns to the previous menu and retains all data.

Use to configure the functions for this Parameter.

Deletes the Parameter currently displayed.
To configure the parameters for a specific data parameter, press:

![Diagram of setup menus]

6.11.2.5. Sample Period and Report Period

The iDAS defines two principal time periods by which sample readings are taken and permanently recorded:

- **SAMPLE PERIOD**: Determines how often iDAS temporarily records a sample reading of the parameter in volatile memory. The SAMPLE PERIOD is set to one minute by default and generally cannot be accessed from the standard iDAS front panel menu, but is available via the instruments communication ports by using APICOM or the analyzer's standard serial data protocol.
SAMPLE PERIOD is only used when the iDAS parameter's sample mode is set for AVG, MIN or MAX.

- REPORT PERIOD: Sets how often the sample readings stored in volatile memory are processed, (e.g. average, minimum or maximum are calculated) and the results stored permanently in the instruments Disk-on-Chip as well as transmitted via the analyzer’s communication ports. The REPORT PERIOD may be set from the front panel.

If the INST sample mode is selected the instrument stores and reports an instantaneous reading of the selected parameter at the end of the chosen REPORT PERIOD.

In AVG, MIN or MAX sample modes, the settings for the SAMPLE PERIOD and the REPORT PERIOD determine the number of data points used each time the average, minimum or maximum is calculated, stored and reported to the COMM ports. The actual sample readings are not stored past the end of the of the chosen REPORT PERIOD.

Also, the SAMPLE PERIOD and REPORT PERIOD intervals are synchronized to the beginning and end of the appropriate interval of the instruments internal clock.

- If SAMPLE PERIOD were set for one minute the first reading would occur at the beginning of the next full minute according to the instrument's internal clock.

- If the REPORT PERIOD were set for of one hour the first report activity would occur at the beginning of the next full hour according to the instrument’s internal clock.

EXAMPLE: Given the above settings, if iDAS were activated at 7:57:35 the first sample would occur at 7:58 and the first report would be calculated at 8:00 consisting of data points for 7:58, 7:59 and 8:00.

During the next hour (from 8:01 to 9:00) the instrument will take a sample reading every minute and include 60 sample readings.

When the STORE NUM. SAMPLES feature is turned on the instrument will also store how many sample readings were used for the AVG, MIN or MAX calculation but not the readings themselves.

REPORT PERIODS IN PROGRESS WHEN INSTRUMENT IS POWERED OFF

If the instrument is powered off in the middle of a REPORT PERIOD, the samples accumulated so far during that period are lost. Once the instrument is turned back on, the iDAS restarts taking samples and temporarily them in volatile memory as part of the REPORT PERIOD currently active at the time of restart. At the end of this REPORT PERIOD only the sample readings taken since the instrument was turned back on will be included in any AVG, MIN or MAX calculation. Also, the STORE NUM. SAMPLES feature will report the number of sample readings taken since the instrument was restarted.
To define the **REPORT PERIOD**, follow the instruction shown in section 6.11.2.2 then press:

![Diagram of data acquisition menu with steps for defining report period]

- Press the **SET>** key until you reach **REPORT PERIOD**…
- Use the **PREV** and **NEXT** keys to scroll to the data channel to be edited.
- Set the number of days between reports (0-366).
- Press keys to set hours between reports in the format: HH:MM (max: 23:59). This is a 24 hour clock. PM hours are 13 thru 23, midnight is 00:00. Example: 2:15 PM = 14:15
- If at any time an illegal entry is selected (e.g., days > 366) the **ENTR** key will disappear from the display.
- Press keys to set hours between reports in the format: HH:MM (max: 23:59). This is a 24 hour clock. PM hours are 13 thru 23, midnight is 00:00. Example: 2:15 PM = 14:15
- **ENTR** accepts the new string and returns to the previous menu.
- **EXIT** ignores the new string and returns to the previous menu.

6.11.2.6. Number of Records

The number of data records in the M6200E is limited to about a cumulative one million data points in all channels (one megabyte of space on the disk-on-chip). However, the actual number of records is also limited by the total number of parameters and channels and other settings in the iDAS configuration. Every additional data channel, parameter, number of samples setting etc. will
reduce the maximum amount of data points somewhat. In general, however, the maximum data capacity is divided amongst all channels (max: 20) and parameters (max: 50 per channel).

The iDAS will check the amount of available data space and prevent the user from specifying too many records at any given point. If, for example, the iDAS memory space can accommodate 375 more data records, the ENTR key will disappear when trying to specify more than that number of records. This check for memory space may also make an upload of an iDAS configuration with APICOM or a Terminal program fail, if the combined number of records would be exceeded. In this case, it is suggested to either try from the front panel what the maximum number of records can be or use trial-and-error in designing the iDAS script or calculate the number of records using the DAS or APICOM manuals. To set the number of records for one channel from the front panel, press SETUP-DAS-EDIT-ENTR and the following key sequence.
6.11.2.7. RS-232 Report Function

The M6200E iDAS can automatically report data to the communications ports, where they can be captured with a terminal emulation program or simply viewed by the user.

To enable automatic COM port reporting, follow the instruction shown in section 6.11.2.2 then press:

6.11.2.8. Compact Report

When enabled, this option avoids unnecessary line breaks on all RS-232 reports. Instead of reporting each parameter in one channel on a separate line, up to five parameters are reported in one line, instead.

6.11.2.9. Starting Date

This option allows to specify a starting date for any given channel in case the user wants to start data acquisition only after a certain time and date. If the Starting Date is in the past, the iDAS ignores this setting.
6.11.2.10. Disabling/Enabling Data Channels

Data channels can be temporarily disabled, which can reduce the read/write wear on the disk-on-chip. The ALL_01 channel of the M6200E, for example, is disabled by default.

To disable a data channel, follow the instruction shown in section 6.11.2.2 then press:
6.11.2.11. HOLDOFF Feature

The iDAS HOLDOFF feature allows to prevent data collection during calibrations and during the DAS_HOLDOFF period enabled and specified in the VARS (Section 6.8). To enable or disable the HOLDOFF, follow the instruction shown in section 6.11.2.2 then press:

![Diagram of HOLDOFF feature instructions]

- From the Data Acquisition menu, edit the Data Channel Menu.
- Set CONC: ATIMER, 2, 4032, R
- Press SET> until CAL HOLD OFF: ON
- Toggle key to turn HOLDOFF ON or OFF
- Press SET> key until...
- Enter (ENTR) accepts the new setting and returns to the previous menu.
- Exit (EXIT) ignores the new setting and returns to the previous menu.
6.11.3. Remote iDAS Configuration

Editing channels, parameters and triggering events as described in this section is can be performed via the APICOM remote control program using the graphic interface shown in Figure 6-15. Refer to the next Section 6.12 for details on remote access to the M6200E analyzer.

![Figure 6-15: APICOM user interface for configuring the iDAS.](image)

Once an iDAS configuration is edited (which can be done offline and without interrupting DAS data collection), it is conveniently uploaded to the instrument and can be stored on a computer for later review, alteration or documentation and archival. Refer to the APICOM manual for details on these procedures. The APICOM user manual (Teledyne Analytical Instruments part number 039450000) is included in the APICOM installation file, which can be downloaded at http://www.teledyne-api.com/software/apicom/.

Although Teledyne Analytical Instruments recommends the use of APICOM, the iDAS can also be accessed and configured through a terminal emulation program such as HyperTerminal (Figure 6-16). However, all configuration commands must be created following a strict syntax or be pasted in from of a text file, which was edited offline and then uploaded through a specific transfer procedure.
Both procedures are best started by downloading the default iDAS configuration, getting familiar with its command structure and syntax conventions, and then altering a copy of the original file offline before uploading the new configuration.

CAUTION

Whereas the editing, adding and deleting of iDAS channels and parameters of one channel through the front-panel keyboard can be done without affecting the other channels, uploading an iDAS configuration script to the analyzer through its communication ports will erase all data, parameters and channels by replacing them with the new iDAS configuration. Backup of data and the original iDAS configuration is advised before attempting any iDAS changes.
6.12. Remote Operation of the Analyzer

6.12.1.1. Status Outputs

The status outputs report analyzer conditions via optically isolated NPN transistors, which sink up to 50 mA of DC current. These outputs can be used to interface with devices that accept logic-level digital inputs, such as programmable logic controllers (PLCs). Each Status bit is an open collector output that can withstand up to 40 VDC. All of the emitters of these transistors are tied together and available at D.

NOTE

Most PLC’s have internal provisions for limiting the current that the input will draw from an external device. When connecting to a unit that does not have this feature, an external dropping resistor must be used to limit the current through the transistor output to less than 50 mA. At 50 mA, the transistor will drop approximately 1.2V from its collector to emitter.

The status outputs are accessed through a 12 pin connector on the analyzer’s rear panel labeled STATUS (see Figure 6-17). The function of each pin is defined in Table 6-22.

![Status Output Connector Diagram](image)
Table 6-22: Status Output Pin Assignments

<table>
<thead>
<tr>
<th>CONNECTOR PIN</th>
<th>STATUS</th>
<th>CONDITION (ON=CONDUCTING)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>System Ok</td>
<td>ON if no faults are present.</td>
</tr>
<tr>
<td>2</td>
<td>Conc Valid</td>
<td>ON if concentration measurement is valid, OFF when invalid.</td>
</tr>
<tr>
<td>3</td>
<td>High Range</td>
<td>ON if unit is in high range of any AUTO range mode.</td>
</tr>
<tr>
<td>4</td>
<td>Zero Cal</td>
<td>ON whenever the instrument is in ZERO calibration mode.</td>
</tr>
<tr>
<td>5</td>
<td>Span Cal</td>
<td>ON whenever the instrument is in SPAN calibration mode.</td>
</tr>
<tr>
<td>6</td>
<td>Diag Mode</td>
<td>ON whenever the instrument is in DIAGNOSTIC mode.</td>
</tr>
<tr>
<td>7</td>
<td>Low Range</td>
<td>ON if unit is in low range of any AUTO range mode.</td>
</tr>
<tr>
<td>8</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Emitter Bus</td>
<td>The emitters of the transistors on pins 1-8 are bussed together. For most applications, this pin should be connected to the circuit ground of the receiving device.</td>
</tr>
<tr>
<td>+</td>
<td>Dc Power</td>
<td>+ 5 VDC source, 30 mA maximum (combined rating with Control Inputs)</td>
</tr>
<tr>
<td>▼</td>
<td>Digital Ground</td>
<td>The ground from the analyzer’s internal, 5/±15 VDC power supply.</td>
</tr>
</tbody>
</table>

6.12.1.2. Control Inputs

Control inputs allow the user to remotely initiate ZERO and SPAN calibration modes are provided through a 10-pin connector labeled CONTROL IN on the analyzer’s rear panel. These are opto-isolated, digital inputs that are activated when a 5 VDC signal from the "U" pin is connected to the respective input pin.
Table 6-23: Control Input Pin Assignments

<table>
<thead>
<tr>
<th>INPUT</th>
<th>STATUS</th>
<th>CONDITION WHEN ENABLED</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>External Zero Cal</td>
<td>Zero calibration mode is activated. The mode field of the display will read ZERO CAL R.</td>
</tr>
<tr>
<td>B</td>
<td>External Span Cal</td>
<td>Span calibration mode is activated. The mode field of the display will read SPAN CAL R.</td>
</tr>
<tr>
<td>C</td>
<td>External Low Span Cal</td>
<td>Low span (mid-point) calibration mode is activated. The mode field of the display will read LO CAL R.</td>
</tr>
<tr>
<td>D</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>Unused</td>
<td></td>
</tr>
<tr>
<td>U</td>
<td>Digital Ground</td>
<td>Provided to ground an external device (e.g., recorder).</td>
</tr>
<tr>
<td>+</td>
<td>DC Power For Input Pull Ups</td>
<td>Input for +5 VDC required to activate inputs A - F. This voltage can be taken from an external source or from the “+” pin.</td>
</tr>
<tr>
<td>+</td>
<td>Internal +5v Supply</td>
<td>Internal source of +5V which can be used to activate inputs when connected to pin U.</td>
</tr>
</tbody>
</table>

There are two methods to activate control inputs. The internal +5V available from the “+” pin is the most convenient method (Figure 6.18). However, to ensure that these inputs are truly isolated, a separate, external 5 VDC power supply should be used (Figure 6.19).

Figure 6-18: Control Inputs with local 5 V power supply

Figure 6-19: Control Inputs with external 5 V power supply
6.12.2. Remote Operation Using the External Serial I/O

6.12.2.1. Terminal Operating Modes

The Model 6200E can be remotely configured, calibrated or queried for stored data through the serial ports. As terminals and computers use different communication schemes, the analyzer supports two communicate modes specifically designed to interface with these two types of devices.

- **Computer mode** is used when the analyzer is connected to a computer with a dedicated interface program such as APICOM. More information regarding APICOM can be found in later in this section or on the Teledyne Analytical Instruments website at http://www.teledyne-api.com/software/apicom/.

- **Interactive mode** is used with a terminal emulation programs such as HyperTerminal or a “dumb” computer terminal. The commands that are used to operate the analyzer in this mode are listed in Table 6-24.

6.12.2.2. Help Commands in Terminal Mode

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control-T</td>
<td>Switches the analyzer to terminal mode (echo, edit). If mode flags 1 & 2 are OFF, the interface can be used in interactive mode with a terminal emulation program.</td>
</tr>
<tr>
<td>Control-C</td>
<td>Switches the analyzer to computer mode (no echo, no edit).</td>
</tr>
<tr>
<td>CR (carriage return)</td>
<td>A carriage return is required after each command line is typed into the terminal/computer. The command will not be sent to the analyzer to be executed until this is done. On personal computers, this is achieved by pressing the ENTER key.</td>
</tr>
<tr>
<td>BS (backspace)</td>
<td>Erases one character to the left of the cursor location.</td>
</tr>
<tr>
<td>ESC (escape)</td>
<td>Erases the entire command line.</td>
</tr>
<tr>
<td>? [ID] CR</td>
<td>This command prints a complete list of available commands along with the definitions of their functionality to the display device of the terminal or computer being used. The ID number of the analyzer is only necessary if multiple analyzers are on the same communications line, such as the multi-drop setup.</td>
</tr>
<tr>
<td>Control-C</td>
<td>Pauses the listing of commands.</td>
</tr>
<tr>
<td>Control-P</td>
<td>Restarts the listing of commands.</td>
</tr>
</tbody>
</table>
6.12.2.3. Command Syntax

Commands are not case-sensitive and all arguments within one command (i.e. ID numbers, keywords, data values, etc.) must be separated with a space character.

All Commands follow the syntax:

```
X [ID] COMMAND <CR>
```

Where

- **X** is the command type (one letter) that defines the type of command. Allowed designators are listed in Table 6-25 and Appendix A-6.
- **[ID]** is the analyzer identification number (Section 6.10.1.). Example: the Command "? 200" followed by a carriage return would print the list of available commands for the revision of software currently installed in the instrument assigned ID Number 200.
- **COMMAND** is the command designator: This string is the name of the command being issued (LIST, ABORT, NAME, EXIT, etc.). Some commands may have additional arguments that define how the command is to be executed. Press ? <CR> or refer to Appendix A-6 for a list of available command designators.
- **<CR>** is a carriage return. All commands must be terminated by a carriage return (usually achieved by pressing the ENTER key on a computer).

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>COMMAND TYPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Calibration</td>
</tr>
<tr>
<td>D</td>
<td>Diagnostic</td>
</tr>
<tr>
<td>L</td>
<td>Logon</td>
</tr>
<tr>
<td>T</td>
<td>Test measurement</td>
</tr>
<tr>
<td>V</td>
<td>Variable</td>
</tr>
<tr>
<td>W</td>
<td>Warning</td>
</tr>
</tbody>
</table>

6.12.2.4. Data Types

Data types consist of integers, hexadecimal integers, floating-point numbers, Boolean expressions and text strings.

- Integer data are used to indicate integral quantities such as a number of records, a filter length, etc. They consist of an optional plus or minus sign, followed by one or more digits. For example, +1, -12, 123 are all valid integers.

- Hexadecimal integer data are used for the same purposes as integers. They consist of the two characters "0x," followed by one or more hexadecimal digits (0-9, A-F, a-f), which is the ‘C’ programming language convention. No plus or minus sign is permitted. For example, 0x1, 0x12, 0x1234abcd are all valid hexadecimal integers.
• Floating-point numbers are used to specify continuously variable values such as temperature set points, time intervals, warning limits, voltages, etc. They consist of an optional plus or minus sign, followed by zero or more digits, an optional decimal point, and zero or more digits. (At least one digit must appear before or after the decimal point.) Scientific notation is not permitted. For example, +1.0, 1234.5678, -0.1, 1 are all valid floating-point numbers.

• Boolean expressions are used to specify the value of variables or I/O signals that may assume only two values. They are denoted by the keywords ON and OFF.

• Text strings are used to represent data that cannot be easily represented by other data types, such as data channel names, which may contain letters and numbers. They consist of a quotation mark, followed by one or more printable characters, including spaces, letters, numbers, and symbols, and a final quotation mark. For example, "a", "1", "123abc", and "()<" are all valid text strings. It is not possible to include a quotation mark character within a text string.

• Some commands allow you to access variables, messages, and other items, such as iDAS data channels, by name. When using these commands, you must type the entire name of the item; you cannot abbreviate any names.

6.12.2.5. Status Reporting

Reporting of status messages as an audit trail is one of the three principal uses for the RS-232 interface (the other two being the command line interface for controlling the instrument and the download of data in electronic format). You can effectively disable the reporting feature by setting the interface to quiet mode (Section 6.10.8., Table 6-18).

Status reports include iDAS data (when reporting is enabled), warning messages, calibration and diagnostic status messages. Refer to Appendix A-3 for a list of the possible messages, and this section for information on controlling the instrument through the RS-232 interface.

General Message Format

All messages from the instrument (including those in response to a command line request) are in the format:

\[X \text{ DDD:HH:MM [Id]} \text{ MESSAGE}<\text{CRLF}> \]

Where

- **X** is a command type designator, a single character indicating the message type, as shown in the Table 6-25.
- **DDD:HH:MM** is the time stamp, the date and time when the message was issued. It consists of the Day-of-year (DDD) as a number from 1 to 366, the hour of the day (HH) as a number from 00 to 23, and the minute (MM) as a number from 00 to 59.
- **[ID]** is the analyzer ID, a number with 1 to 4 digits.
- **MESSAGE** is the message content that may contain warning messages, test measurements, iDAS reports, variable values, etc.
<CRLF> is a carriage return / line feed pair, which terminates the message.

The uniform nature of the output messages makes it easy for a host computer to parse them into an easy structure. Keep in mind that the front panel display does not give any information on the time a message was issued, hence it is useful to log such messages for trouble-shooting and reference purposes. Terminal emulation programs such as HyperTerminal can capture these messages to text files for later review.

6.12.2.6. Remote Access by Modem

The M6200E can be connected to a modem for remote access. This requires a cable between the analyzer's COM port and the modem, typically a DB-9F to DB-25M cable (available from Teledyne Analytical Instruments with part number WR0000024).

Once the cable has been connected, check to make sure the DTE-DCE is in the correct position. Also make sure the M6200E COM port is set for a baud rate that is compatible with the modem, which needs to operate with an 8-bit word length with one stop bit.

The first step is to turn on the **MODEM ENABLE** communication mode (Mode 64, Section 6.10.8). Once this is completed, the appropriate setup command line for your modem can be entered into the analyzer. The default setting for this feature is

```
AT Y0 &D0 &H0 &I0 S0=2 &B0 &N6 &M0 E0 Q1 &W0
```

This string can be altered to match your modem's initialization and can be up to 100 characters long.

To change this setting press:

```
SETUP X.X
COMMUNICATIONS MENU
<CH> CH> INS DEL [A] ENTR EXIT
```
To Initialize the modem press:

To Initialize the modem press:

6.12.2.7. COM Port Password Security

In order to provide security for remote access of the M6200E, a LOGON feature can be enabled to require a password before the instrument will accept commands. This is done by turning on the SECURITY MODE (Section 6.10.8). Once the SECURITY MODE is enabled, the following items apply.

- A password is required before the port will respond or pass on commands.
- If the port is inactive for one hour, it will automatically logoff, which can also be achieved with the LOGOFF command.
- Three unsuccessful attempts to log on with an incorrect password will cause subsequent logins to be disabled for 1 hour, even if the correct password is used.
- If not logged on, the only active command is the '?' request for the help screen.
- The following messages will be returned at logon:
 - LOGON SUCCESSFUL - Correct password given
 - LOGON FAILED - Password not given or incorrect
To log on to the model 6200E analyzer with **SECURITY MODE** feature enabled, type:

```
LOGON 940331
```

940331 is the default password. To change the default password, use the variable RS232_PASS issued as follows:

```
V RS232_PASS=NNNNNN
```

Where N is any numeral between 0 and 9.

6.12.2.8. APICOM Remote Control Program

APICOM is an easy-to-use, yet powerful interface program that allows to access and control any of Teledyne Analytical Instruments’ main line of ambient and stack-gas instruments from a remote connection through direct cable, modem or Ethernet. Running APICOM, a user can:

- Establish a link from a remote location to the M6200E through direct cable connection via RS-232 modem or Ethernet.
- View the instrument’s front panel and remotely access all functions that could be accessed when standing in front of the instrument.
- Remotely edit system parameters and set points.
- Download, view, graph and save data for predictive diagnostics or data analysis.
- Retrieve, view, edit, save and upload iDAS configurations.
- Check on system parameters for trouble-shooting and quality control.

APICOM is very helpful for initial setup, data analysis, maintenance and trouble-shooting. Figure 6-16 shows an example of APICOM being used to remotely configuration the instruments iDAS feature. Figure 6-20 shows examples of APICOM’s main interface, which emulates the look and functionality of the instruments actual front panel.
Figure 6-20: APICOM Remote Control Program Interface

APICOM is included free of cost with the analyzer and the latest versions can also be downloaded for free at http://www.teledyne-api.com/software/apicom/.

6.12.3. Additional Communications Documentation

Table 6-26: Serial Interface Documents

<table>
<thead>
<tr>
<th>Interface / Tool</th>
<th>Document Title</th>
<th>Part Number</th>
<th>Available Online*</th>
</tr>
</thead>
<tbody>
<tr>
<td>APICOM</td>
<td>APICOM User Manual</td>
<td>039450000</td>
<td>YES</td>
</tr>
<tr>
<td>Multi-drop</td>
<td>RS-232 Multi-drop Documentation</td>
<td>021790000</td>
<td>YES</td>
</tr>
<tr>
<td>DAS Manual</td>
<td>Detailed description of the iDAS.</td>
<td>028370000</td>
<td>YES</td>
</tr>
</tbody>
</table>

* These documents can be downloaded at http://www.teledyne-api.com/manuals/
6.12.4. Using the M6200E with a Hessen Protocol Network

6.12.4.1. General Overview of Hessen Protocol

The Hessen protocol is a multidrop protocol, in which several remote instruments are connected via a common communications channel to a host computer. The remote instruments are regarded as slaves of the host computer. The remote instruments are unaware that they are connected to a multidrop bus and never initiate Hessen protocol messages. They only respond to commands from the host computer and only when they receive a command containing their own unique ID number.

The Hessen protocol is designed to accomplish two things: to obtain the status of remote instruments, including the concentrations of all the gases measured; and to place remote instruments into zero or span calibration or measure mode. API’s implementation supports both of these principal features.

The Hessen protocol is not well defined, therefore while API’s application is completely compatible with the protocol itself, it may be different from implementations by other companies.

The following subsections describe the basics for setting up your instrument to operate over a Hessen Protocol network. For more detailed information as well as a list of host computer commands and examples of command and response message syntax, download the Manual Addendum for Hessen Protocol from the Teledyne Analytical Instruments’ web site: http://www.teledyne-ai.com/manuals.

6.12.4.2. Hessen COMM Port Configuration

Hessen protocol requires the communication parameters of the M6200E’s COMM ports to be set differently than the standard configuration as shown in the table below.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Standard</th>
<th>Hessen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Bits</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>Stop Bits</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Parity</td>
<td>None</td>
<td>Even</td>
</tr>
<tr>
<td>Duplex</td>
<td>Full</td>
<td>Half</td>
</tr>
</tbody>
</table>

To change the rest of the COMM port parameters and modes, see Section 6.10.8.

To change the baud rate of the M6200E’s COMM ports, see Section 6.10.9.

NOTE

Make sure that the communication parameters of the host computer are also properly set.

Also, the instrument software has a 200 ms. latency before it responds to commands issued by the host computer. This latency should present no problems, but you should be aware of it and not issue commands to the instrument too frequently.
6.12.4.3. Activating Hessen Protocol

The first step in configuring the M6200E to operate over a Hessen protocol network is to activate the Hessen mode for COMM ports and configure the communication parameters for the port(s) appropriately. Press:

```
SAMPLE ENTER SETUP PASS : 818
8  1  8
ENTR EXIT
```

```
SETUP X.X PRIMARY SETUP MENU
CFG  DAS  RNGE  PASS  CLK  MORE  EXIT
```

```
SAMPLE           RANGE = 500.0 PPB           H2S =XXX.X
< TST  TST >  CAL
```

```
SETUP X.X SECONDARY SETUP MENU
COMM  VARS  DIAG  ALRM  EXIT
```

```
SETUP X.X COMMUNICATIONS MENU
ID  COM1  COM2  EXIT
```

```
SETUP X.X COM1 MODE:0
SET>
EDIT
EXIT
```

```
SETUP X.X COM1 QUIET MODE: OFF
NEXT OFF ENTR EXIT
```

```
SETUP X.X COM1 HESSEN PROTOCOL : OFF
PREV NEXT ON OFF ENTR EXIT
```

```
SETUP X.X COM1 E,7,1 MODE: ON
PREV NEXT ON OFF ENTR EXIT
```

The sum of the mode IDs of the selected modes must be displayed here.

Repeat the entire process to set up the COM2 port.

6.12.4.4. Selecting a Hessen Protocol Type

Currently there are two version of Hessen Protocol in use. The original implementation, referred to as TYPE 1, and a more recently released version, TYPE 2 that more flexibility when operating with instruments that can measure more than one type of gas. For more specific information about the difference between TYPE 1 and TYPE 2 download the Manual Addendum for Hessen Protocol from the Teledyne Analytical Instruments’ web site: http://www.teledyne-ai.com/manuals/index.asp.

To select a Hessen Protocol Type press:
NOTE

While Hessen Protocol Mode can be activated independently for COM1 and COM2, The TYPE selection affects both Ports.

6.12.4.5. Setting The Hessen Protocol Response Mode

The Teledyne Analytical Instruments’ implementation of Hessen Protocol allows the user to choose one of several different modes of response for the analyzer.

Table 6-28: M6200E Hessen Protocol Response Modes

<table>
<thead>
<tr>
<th>MODE ID</th>
<th>MODE DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMD</td>
<td>This is the Default Setting. Responses from the instrument are encoded as the traditional command format. Style and format of responses depend on exact coding of the initiating command.</td>
</tr>
<tr>
<td>BCC</td>
<td>Responses from the instrument are always delimited with <STX> (at the beginning of the response, <ETX> (at the end of the response followed by a 2 digit Block Check Code (checksum), regardless of the command encoding.</td>
</tr>
<tr>
<td>TEXT</td>
<td>Responses from the instrument are always delimited with <CR> at the beginning and the end of the string, regardless of the command encoding.</td>
</tr>
</tbody>
</table>

To Select a Hessen response mode, press:
Press to change response mode.

ENTR key accepts the new settings
EXIT key ignores the new settings
6.12.4.6. Hessen Protocol Gas ID

Since the M6200E can be, when the proper optional equipment is installed and operating, a multigas instrument that measures both H₂S and SO₂, both of these gases are listed in the Hessen protocol gas list. In its default state the Hessen protocol firmware assigns both gases a Hessen ID number and actively reports both even if the instrument is only measuring one.

To change or edit these settings press:

<table>
<thead>
<tr>
<th>KEY</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREV</td>
<td>Moves to next gas entry in list</td>
</tr>
<tr>
<td>NEXT></td>
<td>Moves the cursor previous gas entry in list</td>
</tr>
<tr>
<td>INS</td>
<td>Inserts a new gas entry into the list</td>
</tr>
<tr>
<td>DEL</td>
<td>Deletes the >>>>></td>
</tr>
<tr>
<td>ENTR</td>
<td>Accepts the new setting and returns to the previous menu</td>
</tr>
<tr>
<td>EXIT</td>
<td>Ignores the new setting and returns to the previous menu</td>
</tr>
</tbody>
</table>

SAMPLE
- RANGE = 500.0 PPB
- H₂S = XXX.X
- SETUP
 - < TST TST > CAL
- ENTER SETUP PASS : 818
 - 8 1 8
- ENTR

SETUP X.X
- PRIMARY SETUP MENU
 - FG GAS RNGE PASS CLK MORE EXIT
 - SECONDARY SETUP MENU
 - COMM VARS DIAG ALRM EXIT
- COMMUNICATIONS MENU
 - ID HESN COM1 COM2 EXIT
- HESSEN VARIATION: TYPE 1
 - SET> EDIT EXIT
- HESSEN RESPONSE MODE: CMD
 - <SET> EDIT EXIT
- HESSEN GAS LIST
 - <SET> EDIT EXIT
- SO₂, 111, REPORTED
 - <PREV> NEXT> INS DEL EDIT PRNT EXIT
 - GAS TYPE SO2
 - <PREV> NEXT> ENTR EXIT
 - GAS ID: 111
 - 0 0 0
 - [ENTR EXIT]
- REPORTED: ON
 - ON
 - ENTR EXIT

Use the PREV & NEXT keys to cycle existing entries in Hessen gas list

Toggle this key to switch reporting between ON and OFF
6.12.4.7. Setting Hessen Protocol Status Flags

Teledyne Analytical Instruments’ implementation of Hessen protocols includes a set of status bits that the instrument includes in responses to inform the host computer of its condition. Each bit can be assigned to one operational and warning message flag. The default settings for these bit/flags are:

Table 6-29: Default Hessen Status Bit Assignments

<table>
<thead>
<tr>
<th>STATUS FLAG NAME</th>
<th>DEFAULT BIT ASSIGNMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>WARNING FLAGS</td>
<td></td>
</tr>
<tr>
<td>SAMPLE FLOW WARNING</td>
<td>0001</td>
</tr>
<tr>
<td>PMT DET WARNING</td>
<td>0002</td>
</tr>
<tr>
<td>UV LAMP WARNING</td>
<td>0002</td>
</tr>
<tr>
<td>HVPS WARNING</td>
<td>0004</td>
</tr>
<tr>
<td>DARK CAL WARNING</td>
<td>0008</td>
</tr>
<tr>
<td>RCELL TEMP WARNING</td>
<td>0010</td>
</tr>
<tr>
<td>IZS TEMP WARNING</td>
<td>0020</td>
</tr>
<tr>
<td>PMT TEMP WARNING</td>
<td>0040</td>
</tr>
<tr>
<td>CONV TEMP WARNING</td>
<td>1000</td>
</tr>
<tr>
<td>OPERATIONAL FLAGS</td>
<td></td>
</tr>
<tr>
<td>Instrument Off</td>
<td>0100</td>
</tr>
<tr>
<td>In Manual Calibration Mode</td>
<td>0200</td>
</tr>
<tr>
<td>In Zero Calibration Mode</td>
<td>0400</td>
</tr>
<tr>
<td>In Span Calibration Mode</td>
<td>0800</td>
</tr>
<tr>
<td>UNITS OF MEASURE FLAGS</td>
<td></td>
</tr>
<tr>
<td>UGM</td>
<td>0000</td>
</tr>
<tr>
<td>MGM</td>
<td>2000</td>
</tr>
<tr>
<td>PPB</td>
<td>4000</td>
</tr>
<tr>
<td>PPM</td>
<td>6000</td>
</tr>
<tr>
<td>SPARE/UNUSED BITS</td>
<td></td>
</tr>
<tr>
<td>0080, 8000</td>
<td></td>
</tr>
<tr>
<td>UNASSIGNED FLAGS</td>
<td></td>
</tr>
<tr>
<td>Box Temp Warning</td>
<td>Front Panel Warning</td>
</tr>
<tr>
<td>Sample Press Warning</td>
<td>Analog Cal Warning</td>
</tr>
<tr>
<td>System Reset</td>
<td>Cannot Dyn Zero</td>
</tr>
<tr>
<td>Rear Board Not Detected</td>
<td>Cannot Dyn Span</td>
</tr>
<tr>
<td>Relay Board Warning</td>
<td>Invalid Conc</td>
</tr>
</tbody>
</table>

NOTES:

It is possible to assign more than one flag to the same Hessen status bit. This allows the grouping of similar flags, such as all temperature warnings, under the same status bit.

Be careful not to assign conflicting flags to the same bit as each status bit will be triggered if any of the assigned flags is active.
To assign or reset the status flag bit assignments, press:

The `<CH` and `CH>` keys move the [] cursor left and right along the bit string.

Press the [7] key repeatedly to cycle through the available character set: 0-9

Note: Values of A-F can also be set but are meaningless.
6.12.4.8. Instrument ID Code

Each instrument on a Hessen Protocol network must have a unique ID code. The M6200E is programmed with a default ID code of 101. To change this code see Section 6.10.1

User Notes:
7. CALIBRATION PROCEDURES

This chapter describes the calibration procedures for the M6200E. All of the methods described in this section can be initiated and controlled through the COM ports.

NOTE

If you are using the M6200E for US-EPA controlled monitoring of SO₂, see Chapter 8 for information on the EPA calibration protocol.

7.1. Calibration Preparations

The calibration procedures in this section assume that the analog output reporting range and units of measure, reporting range mode, and reporting range span have already been selected for the analyzer. If this has not been done, please do so before continuing (Section 6.7 for instructions).

Also, unless otherwise stated, the procedures in this Chapter are written with the assumption that the M6200E is being used in its default configuration as an H₂S analyzer. The same methods and setups can be followed when the instrument is configured for SO₂ measurement by substituting SO₂ span gas for the H₂S span gas listed in the procedure.

For analyzers configured in H₂S → SO₂ multigas mode, see Section 7.8

NOTE

In applications where the instrument may be used to measure SO₂ as well as H₂S make sure that the calibration gas being used matches the gas measurement mode in which the instrument is set during the calibration procedure.

7.1.1. Required Equipment, Supplies, and Expendables

Calibration of the Model 6200E analyzer requires a certain amount of equipment and supplies. These include, but are not limited to, the following:

- Zero-air source
- Hydrogen sulfide span gas source
- Gas lines - all gas line materials should be Teflon-type or glass.
- A recording device such as a strip-chart recorder and/or data logger (optional).
7.1.2. Zero Air

Zero air is similar in chemical composition to the Earth’s atmosphere but scrubbed of all components that might affect the analyzer’s readings. For H₂S measuring devices, zero air should be similar in composition to the sample gas but devoid of H₂S, hydrocarbons, and Sulfur dioxide (SO₂).

Devices such as the API Model 701 zero air generator that condition ambient air by drying and removal of pollutants are available. We recommend this type of device for generating zero air.

7.1.3. Gas Standards

Span gas is specifically mixed to match the chemical composition of the gas being measured at about 90% of the desired full measurement range. For example, if the measurement range is 500 ppb, the span gas should have an H₂S concentration of about 450 ppb.

We strongly recommend that span calibration is carried out with bottled, calibrated H₂S or SO₂ span gas, although it is possible to use a permeation tube such as that included in the IZS valve option. Span gases should be certified to a specific accuracy to ensure accurate calibration of the analyzer. Typical gas accuracy for calibrated span gases is 1 or 2 %. H₂S and SO₂ standard gases should be mixed in nitrogen.

7.1.4. Permeation Tubes

Teledyne Analytical Instruments offers an IZS option operating with permeation devices. The accuracy of these devices is about ±5%. Whereas this may be sufficient for quick, daily calibration checks, we recommend the use of certified H₂S gases for accurate calibration.

NOTE

Applications requiring US-EPA equivalency do not allow permeation devices to be used as sources of span gas for calibration of the analyzer where EPA equivalency is required, such as SO₂ monitoring.
7.1.5. Calibration Gas Traceability

All equipment used to produce calibration gases should be verified against standards of the National Institute for Standards and Technology (NIST). To ensure NIST traceability, we recommend to acquire cylinders of working gas that are certified to be traceable to NIST Standard Reference Materials (SRM). These are available from a variety of commercial sources.

Table 7-1: NIST-SRM’s Available for Traceability of H₂S and SO₂ Calibration Gases

<table>
<thead>
<tr>
<th>NIST-SRM</th>
<th>TYPE</th>
<th>NOMINAL CONCENTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>2730</td>
<td>Hydrogen sulfide in N₂</td>
<td>5000 ppb</td>
</tr>
<tr>
<td>2731</td>
<td>Hydrogen sulfide in N₂</td>
<td>20 ppm</td>
</tr>
<tr>
<td>1693a</td>
<td>Sulfur dioxide in N₂</td>
<td>50 ppm</td>
</tr>
<tr>
<td>1694a</td>
<td>Sulfur dioxide in N₂</td>
<td>100 ppm</td>
</tr>
<tr>
<td>1661a</td>
<td>Sulfur dioxide in N₂</td>
<td>500 ppm</td>
</tr>
</tbody>
</table>

7.1.6. Data Recording Devices

A strip chart recorder, data acquisition system or digital data acquisition system should be used to record data from the M6200E’s serial or analog outputs. If analog readings are used, the response of the recording system should be checked against a NIST traceable voltage source or meter. Data recording device should be capable of bi-polar operation so that negative readings can be recorded. For electronic data recording, the M6200E provides an internal data acquisition system (iDAS), which is described in detail in Section 6.11.

7.2. Manual Calibration

The following section describes the basic method for manually calibrating the Model 6200E analyzer in H₂S measurement mode. The same method may be used to calibrate the M6200E analyzers configured for SO₂ measurement by substituting SO₂ span gas for the H₂S span gas listed. See Section 7.8 for instructions on calibrating analyzers configured for multigas measurement mode.

NOTE on Calibration and Calibration Checks

Pressing the ENTR key during the following procedure re-calculates the stored values for H₂S OFFS¹ and H₂S SLOPE¹ (instrument response curve) and alters the instrument’s calibration.

If you wish to perform a calibration CHECK, do not press ENTR and see Section 7.3.
STEP ONE: Connect the sources of zero air and span gas as shown below.

![Setup for Manual Calibration without Z/S valve or IZS Option](image)

Figure 7-1: Setup for Manual Calibration without Z/S valve or IZS Option
STEP TWO: Set the expected H₂S span gas concentrations. In this example the instrument is set for single (SNGL) range mode with a reporting range span of 500 ppb.

The H₂S span concentration values automatically default to 450.0 Conc. To change this value to the actual concentration of the span gas, enter the number by pressing the key under each digit until the expected value appears. The span gas concentration should always be 90% of the selected reporting range.

EXAMPLE:
Reporting range = 800 ppb
Span gas conc. = 720 ppb

This sequence causes the analyzer to prompt for the expected H₂S span concentration.

EXIT ignores the new setting and returns to the previous display.
ENTR accepts the new setting and returns to the previous display.
STEP THREE: Perform the zero/span calibration:

ACTION:
Allow zero gas to enter the sample port at the rear of the instrument.

NOTE
If the ZERO or SPAN keys are not displayed during zero or span calibration, the measured concentration value is too different from the expected value and the analyzer does not allow to zero or span the instrument.
Consult Section 11.3 for more information on calibration problems.
7.3. Manual Calibration Checks

Informal calibration checks, which only evaluate but do not alter the analyzer’s response curve, are recommended as a regular maintenance item and in order to monitor the analyzer’s performance.

The following section describes the basic method for manually checking the calibration of the Model 6200E analyzer in H2S measurement mode. The same method may be used to manually check the calibrate the M6200E analyzers configured for SO2 measurement by substituting SO2 span gas for the H2S span gas listed. See Section 7.8 for instructions for performing calibration checks on analyzers configured for multigas measurement mode.

To carry out a calibration check rather than a full calibration, follow these steps.

STEP ONE: Connect the sources of zero air and span gas as shown in Figure 7.1.

STEP TWO: Perform the zero/span calibration check procedure:

1. **Sampl**e H2S STB=XXX.X PPB
2. **< TST TST >** CAL SETUP
 - **ACTION:** Supply the instrument with zero gas.

3. **SAMPLE** H2S STB=XXX.X PPB
 - **< TST TST >** CAL SETUP
 - **ACTION:** Supply span gas to the instrument

4. **SAMPLE** H2S STB=XXX.X PPB
 - **< TST TST >** CAL SETUP
 - **ACTION:** Record the H2S concentration reading.

5. **The SPAN key appears during the transition from zero to span. You may see both keys.**
7.4. Manual Calibration with Zero/Span Valves

Zero and Span calibrations using the Zero/Span Valve option are similar to that described in Section 7.2, except that:

Zero air and span gas is supplied to the analyzer through the zero gas and span gas inlets rather than through the sample inlet.

The zero and cal operations are initiated directly and independently with dedicated keys (CALZ & CALS)

STEP ONE: Connect the sources of zero air and span gas to the respective ports on the rear panel (Figure 3-2) as shown below.

![Figure 7-2: Setup for Manual Calibration with Z/S Valve Option Installed](image_url)
Step Two: Set the expected H₂S span gas value:

The H₂S span concentration values automatically default to 450.0 Conc.

To change this value to the actual concentration of the span gas, enter the number by pressing the key under each digit until the expected value appears.

The span gas concentration should always be 90% of the selected reporting range.

EXAMPLE

Reporting range = 800 ppb
Span gas conc. = 720 ppb

This sequence causes the analyzer to prompt for the expected H₂S span concentration.

EXIT ignores the new setting and returns to the previous display.
ENTR accepts the new setting and returns to the previous display.
Step Three: Perform the calibration or calibration check according to the following flow chart:

Analyzer enters ZERO CAL mode.

- **SAMPLE**
 - RANGE = 500.0 PPB
 - H2S = XXX.X
 - < TST TST > CAL CALZ CALS SETUP

1. Scroll the display to the H2S STB test function. This function calculates the stability of the H2S measurements.

2. **ZERO CAL M**
 - H2S STB=XXX.X PPB
 - H2S = XXX.X
 - < TST TST > ZERO CONC EXIT

3. **ZERO CAL M**
 - H2S STB=XXX.X PPB
 - H2S = XXX.X
 - < TST TST > CAL CALZ CALS SETUP

ACTION:
- Allow zero gas to enter the sample port at the rear of the instrument.
- Wait until H2S STB falls below 0.5 ppb. This may take several minutes.

EXIT returns the unit to SAMPLE mode without changing the calibration values.

Pressing ENTR changes the calibration of the instrument.

- **SPAN CAL M**
 - H2S STB=XXX.X PPB
 - H2S = XXX.X
 - < TST TST > SPAN CONC EXIT

Analyzer enters SPAN CAL Mode.

4. If either the ZERO or SPAN button fails to appear, see Chapter 11 for troubleshooting tips.

5. **SPAN CAL M**
 - H2S STB=XXX.X PPB
 - H2S = XXX.X
 - < TST TST > SPAN CONC EXIT

The value of H2S STB may jump significantly. Wait until it falls below 0.5 ppb. This may take several minutes.

EXIT returns to the SAMPLE mode without changing the calibration values.

6. **EXIT** returns to the main SAMPLE display.
7.5. Manual Calibration with IZS Option

The following section describes the basic method for manually calibrating the Model 6200E analyzer in H₂S measurement mode using the IZS option. The same method may be used to calibrate the M6200E analyzers configured for SO₂ measurement but requires that an SO₂ permeation tube be installed in the instrument instead of the standard H₂S tube.

See Section 7.8 for instructions on calibrating analyzers configured for multigas measurement mode.

Under the best conditions, the accuracy of the H₂S effusion rate of the IZS option’s permeation tube is about ±5%. This can be subject to significant amounts of drift as the tube ages and the amount of H₂S contained in the tube is depleted. Whereas this may be sufficient for calibrating instrument configured for H₂S measurement and for informal calibration checks of instruments measuring SO₂, it is not adequate for formal SO₂ calibrations and is not approved for use by the US EPA as a calibration source for calibrating SO₂ monitoring equipment.

For applications where more stringent calibration requirements are specified for an instrument with an IZS option installed the following provisions must be followed.

1. Zero air and span gas must be supplied to the analyzer through the sample gas inlet as depicted in Figure 7-1 of Section 7.2.

2. The calibration procedure must be initiated using the CAL key, not the CALZ and CALS keys, using the procedure defined in Section 7.2.

3. Using the CAL key does not activate the zero/span or sample/cal valves of the IZS option, thus allowing the introduction of zero air and sample gas through the sample port from more accurate, external sources such as a calibrated bottle of H₂S and SO₂ or a Model 700 Dilution Calibrator.
7.6. Manual Calibration Checks with IZS or Zero/Span Valves

Zero and span checks using the zero/span valve or IZS option are similar to that described in Section 7.3, except:

On units with an IZS option installed, zero air and span gas are supplied to the analyzer through the zero gas inlet and from ambient air.

On units with a zero/span valve option installed, zero air and span gas are supplied to the analyzer through the zero gas and span gas inlets from two different sources.

The zero and calibration operations are initiated directly and independently with dedicated keys CALZ and CALS.

To perform a manual calibration check of an analyzer with a zero/span valve or IZS Option installed, use the following method:

NOTE

The instrument can only be fitted with one type of permeation tube at a time. Therefore the IZS option can only be used to calibrate or check the instrument for one gas, H₂S or SO₂, but not both.
STEP ONE: Connect the sources of Zero Air and Span Gas as shown below.

Figure 7-3: Setup for Manual Calibration Check with Z/S Valve or IZS Option
STEP TWO: Perform the zero/span check.

- **ACTION**: Record the \(\text{H}_2\text{S} \) readings presented in the upper right corner of the display.

- **ACTION**: Record the \(\text{H}_2\text{S} \) readings presented in the upper right corner of the display.

- **EXIT** returns to the main SAMPLE display.

- Scroll to the \(\text{H}_2\text{S} \) STB test function.

- Wait until \(\text{H}_2\text{S} \) STB falls below 0.5 ppb. This may take several minutes.

- The value of \(\text{H}_2\text{S} \) STB may jump significantly. Wait until \(\text{H}_2\text{S} \) STB falls below 0.5 ppb. This may take several minutes.
7.7. Manual Calibration in INDEPENDENT or AUTO Reporting Range Modes

If the analyzer is being operated in **IND** or **AUTO** Range mode, then the High and Low ranges must be independently checked.

When the analyzer is in either Independent or Auto Range modes the user must run a separate calibration procedure for each range. After pressing the **CAL**, **CALZ** or **CALS** keys the user is prompted for the range that is to be calibrated as seen in the **CALZ** example below:

```
SAMPLE     H2S STB = XXX.X PPB     H2S =XXX.X
< TST,TST >  CAL   CALZ   CALS   SETUP
```

Once this selection is made, the calibration procedure continues as previously described in Sections 7.2 through 7.6. The other range may be calibrated by starting over from the main **SAMPLE** display.

7.7.1. Calibration With Remote Contact Closures

Contact closures for controlling calibration and calibration checks are located on the rear panel **CONTROL IN** connector. Instructions for setup and use of these contacts can be found in Section 6.12.2.

When the appropriate contacts are closed for at least 5 seconds, the instrument switches into zero, low span or high span mode and the internal zero/span valves will be automatically switched to the appropriate configuration. The remote calibration contact closures may be activated in any order. It is recommended that contact closures remain closed for at least 10 minutes to establish a reliable reading; the instrument will stay in the selected mode for as long as the contacts remain closed.

If contact closures are used in conjunction with the analyzer’s AutoCal (Section 7.9) feature and the AutoCal attribute **CALIBRATE** is enabled, the M6200E will not re-calibrate the analyzer until
the contact is opened. At this point, the new calibration values will be recorded before the instrument returns to SAMPLE mode.

If the AutoCal attribute **CALIBRATE** is disabled, the instrument will return to SAMPLE mode, leaving the instrument’s internal calibration variables unchanged.

7.8. Manual Calibration in Multigas Measurement Mode

If the analyzer is being operated in multigas measurement mode, the methods and setups for performing calibrations are identical to those defined in Sections 7.2 and 7.4 with the two exceptions:

- Some provision must be made for supplying both types of calibrated span gas to the analyzer. A typical setup for this might be:

![Diagram of typical setup for manual calibration of M6200E in multigas measurement mode]

- The analyzer will ask to have the **GAS TYPE** specified at the beginning of the process as follows:

![Diagram showing the analyzer's calibration process]

Once this selection is made, the calibration procedure continues as previously described. The other gas may be calibrated by starting over from the main **SAMPLE** display.
7.9. Automatic Calibration/Checks (AutoCal)

The AutoCal system allows unattended, periodic operation of the zero/span valve options by using the analyzer’s internal time of day clock. AutoCal operates by executing user-defined sequences to initiate the various calibration modes of the analyzer and to open and close valves appropriately. It is possible to program and run up to three separate sequences (SEQ1, SEQ2 and SEQ3). Each sequence can operate in one of three modes or be disabled.

<table>
<thead>
<tr>
<th>Table 7-2: AutoCal Modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MODE</td>
</tr>
<tr>
<td>DISABLED</td>
</tr>
<tr>
<td>ZERO</td>
</tr>
<tr>
<td>ZERO-SPAN</td>
</tr>
<tr>
<td>SPAN</td>
</tr>
</tbody>
</table>

Each mode has seven parameters that control operational details of the sequence (Table 7-3).

<table>
<thead>
<tr>
<th>Table 7-3: AutoCal Attribute Setup Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attribute Name</td>
</tr>
<tr>
<td>Timer Enabled</td>
</tr>
<tr>
<td>Starting Date</td>
</tr>
<tr>
<td>Starting Time</td>
</tr>
<tr>
<td>Delta Days</td>
</tr>
<tr>
<td>Delta Time</td>
</tr>
<tr>
<td>Duration</td>
</tr>
<tr>
<td>Calibrate</td>
</tr>
</tbody>
</table>

NOTE

The programmed STARTING_TIME must be a minimum of 5 minutes later than the real time clock (See Section 6.6 for setting real time clock).
NOTE

Avoid setting two or more sequences at the same time of the day. Any new sequence which is initiated whether from a timer, the COM ports, or the contact closure inputs will override any sequence which is in progress.

NOTE

If at any time an illegal entry is selected (Example: Delta Days > 367) the ENTR key will disappear from the display.

The following example sets Sequence2 to carry out a zero-span calibration every other day starting at 01:00 on September 4, 2002, lasting 15 minutes. This sequence will start 0.5 hours later each day.

Table 7-4: Example Auto-Cal Sequence

<table>
<thead>
<tr>
<th>MODE AND ATTRIBUTE</th>
<th>VALUE</th>
<th>COMMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEQUENCE</td>
<td>2</td>
<td>Define Sequence #2</td>
</tr>
<tr>
<td>MODE</td>
<td>ZERO-SPAN</td>
<td>Select Zero and Span Mode</td>
</tr>
<tr>
<td>TIMER ENABLE</td>
<td>ON</td>
<td>Enable the timer</td>
</tr>
<tr>
<td>STARTING DATE</td>
<td>Sept. 4, 2002</td>
<td>Start after Sept 4, 2002</td>
</tr>
<tr>
<td>STARTING TIME</td>
<td>01:00</td>
<td>First Span starts at 01:00</td>
</tr>
<tr>
<td>DELTA DAYS</td>
<td>2</td>
<td>Do Sequence #2 every other day</td>
</tr>
<tr>
<td>DELTA TIME</td>
<td>00:30</td>
<td>Do Sequence #2 0.5 h later each day</td>
</tr>
<tr>
<td>DURATION</td>
<td>15.0</td>
<td>Operate Span valve for 15 min</td>
</tr>
<tr>
<td>CALIBRATE</td>
<td>ON</td>
<td>The instrument will re-set the slope and offset values for the H₂S channel at the end of the AutoCal sequence</td>
</tr>
</tbody>
</table>
With dynamic calibration turned on, the state of the internal setup variables DYN_SPAN and DYN_ZERO is set to ON and the instrument will reset the slope and offset values for the H2S response each time the AutoCal program runs. This continuous re-adjustment of calibration parameters can often mask subtle fault conditions in the analyzer. It is recommended that, if dynamic calibration is enabled, the analyzer's test functions, slope and offset values be checked frequently to assure high quality and accurate data from the instrument.
7.9.1. Autocal of instruments in INDEPENDENT or AUTO Reporting Range Modes

If the analyzer is being operated in **IND** or **AUTO** Range mode, then the High and Low ranges must be specified as part of the Auto Cal set up. This parameter appears at the end of the programming sequences after the **CALIBRATE: ON/OFF** parameter is set. For example:

Follow standard AutoCal programming process to this point, then ...

- SETUP X.X CALIBRATE: ON
 - <SET> SET EXIT
- SETUP X.X RANGE TO CAL: LOW
 - <SET> EDIT EXIT
- SETUP X.X RANGE TO CAL: LOW
 - LOW HIGH ENTR EXIT
- SETUP X.X RANGE TO CAL: HIGH
 - LOW HIGH ENTR EXIT
- SETUP X.X RANGE TO CAL: HIGH
 - <SET> EDIT EXIT
- SETUP X.X SEQ 2: ZERO-SPAN, 2:00:30
 - PREV NEXT MODE SET EXIT

NOTE

Make sure that the gas for which the AutoCal sequence has been programmed is being supplied to the analyzer at the time the autocal program initiates.

If the wrong gas is being supplied to the instrument, the analyzer will be mis-calibrated.

7.9.2. Autocal of instruments in Multigas Measurement Mode

If the analyzer is being operated in multigas measurement mode, autocal can only be programmed to calibrate the instrument with one of the available gases.
If the instrument is in multigas measurement mode and the **SNGL** reporting range mode is selected, the AutoCal sequence is programmed as described above. If the reporting range of the M6200E must be set for either **IND** or **AUTO**, the gas type and range to be measured must be specified. This parameter appears at the end of the programming sequences after the **CALIBRATE: ON/OFF** parameter is set. For example:

```
SETUP XX
<SET> CALIBRATE: ON
EDIT EXIT
SETUP XX
GAS-RANGE: H2S-HIGH
<SET EDIT EXIT
SETUP XX
GAS TO CAL: H2S
SO2 H2S ENTR EXIT
SETUP XX
Gas TO CAL: SO2
LOW HIGH ENTR EXIT
SETUP XX
RANGE TO CAL: LOW
LOW HIGH ENTR EXIT
SETUP XX
RANGE TO CAL: HIGH
LOW HIGH ENTR EXIT
SETUP XX
GAS-RANGE: SO2-LOW
<SET EDIT EXIT
SETUP XX
SEQ 2 ZERO-SPAN, 2:00:30 PREV NEXT MODE SET EXIT
EXIT returns to the SETUP Menu
```

7.10. Calibration Quality

After completing one of the calibration procedures described above, it is important to evaluate the analyzer’s calibration slope and offset parameters. These values describe the linear response curve of the analyzer. The values for these terms, both individually and relative to each other, indicate the quality of the calibration. To perform this quality evaluation, you will need to record the values of both test functions (Section 6.2.1 or Appendix A-3), all of which are automatically stored in the iDAS channel **CALDAT** for data analysis, documentation, and archival.

Make sure that these parameters are within the limits listed in Table 7-5.

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>MINIMUM VALUE</th>
<th>OPTIMUM VALUE</th>
<th>MAXIMUM VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2S SLOPE¹</td>
<td>-0.700</td>
<td>1.000</td>
<td>1.300</td>
</tr>
<tr>
<td>H2S OFFS¹</td>
<td>50.0 mV</td>
<td>1.000</td>
<td>250.0 mV</td>
</tr>
</tbody>
</table>

These values should not be significantly different from the values recorded on the Teledyne Analytical Instruments **Final Test and Validation Data** sheet that was shipped with your instrument. If they are, refer to the troubleshooting Chapter 11.

¹ Shown as they appear when analyzer is in H2S mode. In SO2 mode they appear as **SO2 OFFS** & **SO2 SLOPE**. In multigas mode, both version are listed and should be checked,
User Notes
8. EPA PROTOCOL CALIBRATION

8.1. Calibration Requirements

When configured for SO₂ measurement mode or multigas measurement mode, the M6200E may be used for EPA SLAMS monitoring. In these cases it must be calibrated in accordance with the instructions in this section.

At the writing of this manual there is no EPA requirements for the monitoring of H₂S or published H₂S calibration protocols, therefore these instruction only discuss the calibration of the SO₂ measurement feature.

In order to insure that high quality, accurate measurements are obtained at all times, the M6200E must be calibrated prior to use. A quality assurance program centered on this aspect and including attention to the built-in warning features of the M6200E, periodic inspection, regular zero/span checks and routine maintenance is paramount to achieving this.

In order to have a better understanding of the factors involved in assuring continuous and reliable information from the M6200E, it is strongly recommended that Publication No. PB 273-518 Quality Assurance Handbook for Air Pollution Measurement Systems (abbreviated, Q.A. Handbook) be purchased from the NTIS (phone 703-605-6000). Special attention should be paid to Section 2.9 which deals with fluorescence based SO₂ analyzers and upon which most of this section is based. Specific regulations regarding the use and operation of ambient hydrogen sulfide analyzers can be found in 40 CFR 50 and 40 CFR 58. Both publications are available from the U.S. Government Printing Office (phone 202-512-0327).

8.1.1. Calibration of Equipment

In general, calibration is the process of adjusting the gain and offset of the M6200E against some recognized standard. The reliability and usefulness of all data derived from any analyzer depends primarily upon its state of calibration. In this section the term dynamic calibration is used to express a multipoint check against known standards and involves introducing gas samples of known concentration into the instrument in order to adjust the instrument to a predetermined sensitivity and to produce a calibration relationship. This relationship is derived from the instrumental response to successive samples of different known concentrations. As a minimum, three reference points and a zero point are recommended to define this relationship. The true values of the calibration gas must be traceable to NIST-SRM’s. See Table 7.1.

All monitoring instrument systems are subject to some drift and variation in internal parameters and cannot be expected to maintain accurate calibration over long periods of time. Therefore, it is necessary to dynamically check the calibration relationship on a predetermined schedule. Zero and span checks must be used to document that the data remains within control limits. These checks are also used in data reduction and validation. Table 8-3 summarizes the initial quality assurance activities for calibrating equipment. Table 8-2 is a matrix for the actual dynamic calibration procedure.

Calibrations should be carried out at the field monitoring site. The Analyzer should be in operation for at least several hours (preferably overnight) before calibration so that it is fully warmed up and its operation has stabilized. During the calibration, the M6200E should be in the CAL mode, and therefore sample the test atmosphere through all components used during normal ambient
sampling and through as much of the ambient air inlet system as is practicable. If the Instrument will be used on more than one range (i.e. **IND** or **AUTO** ranges), it should be calibrated separately on each applicable range. Calibration documentation should be maintained with each analyzer and also in a central backup file.

Table 8-1: Activity Matrix for Calibration Equipment & Supplies

<table>
<thead>
<tr>
<th>EQUIPMENT/SUPPLIES</th>
<th>ACCEPTANCE LIMITS</th>
<th>FREQUENCY AND METHOD OF MEASUREMENT</th>
<th>ACTION IF REQUIREMENTS ARE NOT MET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recorder</td>
<td>Compatible with output signal of analyzer; min. chart width of 150 mm (6 in) is recommended</td>
<td>Check upon receipt</td>
<td>Return equipment to supplier</td>
</tr>
<tr>
<td>Sample Line And Manifold</td>
<td>Constructed of PTFE or glass</td>
<td>Check upon receipt</td>
<td>Return equipment to supplier</td>
</tr>
<tr>
<td>Calibration Equipment</td>
<td>Meets guidelines of reference 1 and Section 2.3.2 (Q.A. Handbook)</td>
<td>See Section 2.3.9 (Q.A. Handbook)</td>
<td>Return equipment/supplies to supplier or take corrective action</td>
</tr>
<tr>
<td>Working Standard SO2 Cylinder Gas Or SO2 Permeation Tube</td>
<td>Traceable to NIST-SRM meets limits in traceability protocol for accuracy and stability (Section 2.0.7, Q.A. Handbook)</td>
<td>Analyzed against NIST-SRM; see protocol in Section 2.0.7, Q.A. Handbook</td>
<td>Obtain new working standard and check for traceability</td>
</tr>
<tr>
<td>Zero Air</td>
<td>Clean dry ambient air, free of contaminants that cause detectable response with the SO2 analyzer.</td>
<td>See Section 2.9.2 (Q.A. Handbook)</td>
<td>Obtain air from another source or regenerate.</td>
</tr>
<tr>
<td>Record Form</td>
<td>Develop standard forms</td>
<td>N/A</td>
<td>Revise forms as appropriate</td>
</tr>
<tr>
<td>Audit Equipment</td>
<td>Must not be the same as used for calibration</td>
<td>System must be checked out against known standards</td>
<td>Locate problem and correct or return to supplier</td>
</tr>
</tbody>
</table>

Table 8-2: Activity Matrix for Calibration Procedure

<table>
<thead>
<tr>
<th>EQUIPMENT/SUPPLIES</th>
<th>ACCEPTANCE LIMITS</th>
<th>FREQUENCY AND METHOD OF MEASUREMENT</th>
<th>ACTION IF REQUIREMENTS ARE NOT MET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Calibration Gases</td>
<td>NIST traceable</td>
<td>Assayed against an NIST-SRM semi-annually, Sec. 2.0.7, (Q.A. Handbook)</td>
<td>Working gas standard is unstable, and/or measurement method is out of control; take corrective action such as obtaining new calibration gas.</td>
</tr>
<tr>
<td>Dilution Gas</td>
<td>Zero air, free of contaminants</td>
<td>See Section 2.9.2 (Q.A. Manual)</td>
<td>Return to supplier or take appropriate action with generation system</td>
</tr>
<tr>
<td>Multi-Point Calibration</td>
<td>Use calibration procedure in Subsec. 2.2 (Q.A. Handbook); also Federal Register</td>
<td>Perform at least once every quarter or anytime a level span check indicates a discrepancy, or after maintenance which may affect the calibration; Subsec 2.5 (Q.A. Manual)</td>
<td>Repeat the calibration</td>
</tr>
</tbody>
</table>
8.1.2. Data Recording Device

Either a strip chart recorder, data acquisition system, digital data acquisition system should be used to record the data from the Model M6200E RS-232 port or analog outputs. If analog readings are being used, the response of that system should be checked against a NIST referenced voltage source or meter. Data recording device should be capable of bi-polar operation so that negative readings can be recorded.

8.1.3. Recommended Standards for Establishing Traceability

To assure data of desired quality, two considerations are essential: (1) the measurement process must be in statistical control at the time of the measurement and (2) the systematic errors, when combined with the random variation in the measurement process, must result in a suitably small uncertainty.

Evidence of good quality data includes documentation of the quality control checks and the independent audits of the measurement process by recording data on specific forms or on a quality control chart and by using materials, instruments, and measurement procedures that can be traced to appropriate standards of reference. To establish traceability, data must be obtained routinely by repeat measurements of standard reference samples (primary, secondary, and/or working standards). More specifically, working calibration standards must be traceable to standards of higher accuracy, such as those listed in Table 7-1.6.

Cylinders of working gas traceable to NIST-SRM's (called EPA Protocol Calibration Gas) are also commercially available (from sources such as Scott Specialty Gases, etc.).

8.1.4. EPA Calibration Using Permeation Tubes

Teledyne Analytical Instruments does not recommend the use of permeation tubes as a source of span gas for EPA protocol calibration operations.

8.1.5. Calibration Frequency

To ensure accurate measurements of the SO₂ concentrations, calibrate the analyzer at the time of installation, and re-calibrate it:

- No later than three months after the most recent calibration or performance audit which indicated analyzer calibration to be acceptable.
- An interruption of more than a few days in analyzer operation.
- Any repairs which might affect its calibration.
- Physical relocation of the analyzer.
- Any other indication (including excessive zero or span drift) of possible significant inaccuracy of the analyzer.

Following any of the activities listed above, the zero and span should be checked to determine if a calibration is necessary. If the analyzer zero and span drifts exceed locally established calibration
units or the calibration limits in Section 2.0.9, Subsection 9.1.3 (Q.A. Handbook), a calibration
should be performed.

8.1.6. Record Keeping

Record keeping is a critical part of all quality assurance programs. Standard forms similar to those
that appear in this manual should be developed for individual programs. Three things to consider in
the development of record forms are:

- Does the form serve a necessary function?
- Is the documentation complete?
- Will the forms be filed in such a manner that they can easily be retrieved when needed?

8.1.7. Summary of Quality Assurance Checks

The following items should be checked on a regularly scheduled basis to assure high quality data
from the M6200E. See Table 8-3 for a summary of activities. Also the QA Handbook should be
checked for specific procedures.

Table 8-3: Activity Matrix

<table>
<thead>
<tr>
<th>CHARACTERISTIC</th>
<th>ACCEPTANCE LIMITS</th>
<th>FREQUENCY AND METHOD OF MEASUREMENT</th>
<th>ACTION IF REQUIREMENTS ARE NOT MET</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shelter Temperature</td>
<td>Mean temperature between 22°C and 28°C (72° and 82°F),</td>
<td>Check thermograph chart weekly for variations greater than ±2°C (4°F)</td>
<td>Mark strip chart for the affected time period</td>
</tr>
<tr>
<td></td>
<td>daily fluctuations not greater than ±2°C</td>
<td></td>
<td>Repair or adjust temperature control</td>
</tr>
<tr>
<td>Sample Introduction</td>
<td>No moisture, foreign material, leaks, obstructions;</td>
<td>Weekly visual inspection</td>
<td>Clean, repair, or replace as needed</td>
</tr>
<tr>
<td>System</td>
<td>sample line connected to manifold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recorder</td>
<td>Adequate ink & paper</td>
<td>Weekly visual inspection</td>
<td>Replenish ink and paper supply</td>
</tr>
<tr>
<td></td>
<td>Legible ink traces</td>
<td></td>
<td>Adjust time to agree with clock; note on chart</td>
</tr>
<tr>
<td></td>
<td>Correct chart speed and range</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Correct time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyzer Operational</td>
<td>TEST measurements at nominal values</td>
<td>Weekly visual inspection</td>
<td>Adjust or repair as needed</td>
</tr>
<tr>
<td>Settings</td>
<td>2. M6200E in SAMPLE mode</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analyzer Operational</td>
<td>Zero and span within tolerance limits as described in</td>
<td>Level 1 zero/span every 2 weeks; Level 2 between Level 1 checks at</td>
<td>Find source of error and repair</td>
</tr>
<tr>
<td>Check</td>
<td>Subsec. 9.1.3 of Sec. 2.0.9 (Q.A. Handbook)</td>
<td>frequency desired analyzer by user</td>
<td>After corrective action, re-calibrate analyzer</td>
</tr>
<tr>
<td>Precision Check</td>
<td>Assess precision as described in Sec. 2.0.8 and Subsec.</td>
<td>Every 2 weeks, Subsec. 3.4.3 (Ibid.)</td>
<td>Calc, report precision, Sec. 2.0.8 (Ibid.)</td>
</tr>
</tbody>
</table>
8.2. Level 1 Calibrations versus Level 2 Checks

Essential to quality assurance are scheduled checks for verifying the operational status of the monitoring system. The operator should visit the site at least once each week. It is recommended Level 1 zero and span check conducted on the analyzer every two weeks. Level 2 zero and span checks should be conducted at a frequency desired by the user. Definitions of these terms are given in Table 8-4.

In addition, an independent precision check between 0.08 and 0.10 ppm must be carried out at least once every two weeks. Table 8-3 summarizes the quality assurance activities for routine operations. A discussion of each activity appears in the following sections.

To provide for documentation and accountability of activities, a checklist should be compiled and then filled out by the field operator as each activity is completed.

Table 8-4: Definition of Level 1 and Level 2 Zero and Span Checks
(from Section 2.0.9 of Q.A. Handbook for Air Pollution Measurement Systems)

<table>
<thead>
<tr>
<th>LEVEL 1 ZERO AND SPAN CALIBRATION</th>
<th>LEVEL 2 ZERO AND SPAN CHECK</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Level 1 zero and span calibration is a simplified, two-point analyzer calibration used when analyzer linearity does not need to be checked or verified. (Sometimes when no adjustments are made to the analyzer, the Level 1 calibration may be called a zero/span check, in which case it must not be confused with a Level 2 zero/span check.) Since most analyzers have a reliably linear or near-linear output response with concentration, they can be adequately calibrated with only two concentration standards (two-point concentration). Furthermore, one of the standards may be zero concentration, which is relatively easily obtained and need not be certified. Hence, only one certified concentration standard is needed for the two-point (Level 1) zero and span calibration. Although lacking the advantages of the multipoint calibration, the two-point zero and span calibration--because of its simplicity--can be (and should be) carried out much more frequently. Also, two-point calibrations are easily automated. Frequency checks or updating of the calibration relationship with a two-point zero and span calibration improves the quality of the monitoring data by helping to keep the calibration relationship more closely matched to any changes (drifts) in the analyzer response.</td>
<td>A Level 2 zero and span check is an "unofficial" check of an analyzer's response. It may include dynamic checks made with uncertified test concentrations, artificial stimulation of the analyzer's detector, electronic or other types of checks of a portion of the analyzer, etc. Level 2 zero and span checks are not to be used as a basis for analyzer zero or span adjustments, calibration updates, or adjustment of ambient data. They are intended as quick, convenient checks to be used between zero and span calibrations to check for possible analyzer malfunction or calibration drift. Whenever a Level 2 zero or span check indicates a possible calibration problem, a Level 1 zero and span (or multipoint) calibration should be carried out before any corrective action is taken. If a Level 2 zero and span check is to be used in the quality control program, a "reference response" for the check should be obtained immediately following a zero and span (or multipoint) calibration while the analyzer's calibration is accurately known. Subsequent Level 2 check responses should then be compared to the most recent reference response to determine if a change in response has occurred. For automatic Level 2 zero and span checks, the first scheduled check following the calibration should be used for the reference response. It should be kept in mind that any Level 2 check that involves only part of the analyzer's system cannot provide information about the portions of the system not checked and therefore cannot be used as a verification of the overall analyzer calibration.</td>
</tr>
</tbody>
</table>
8.3. ZERO and SPAN Checks

A system of Level 1 and Level 2 zero span checks (see Table 8-4) is recommended. These checks must be conducted in accordance with the specific guidance given in Subsection 9.1 of Section 2.0.9 (Q.A. Handbook). It is recommended Level 1 zero and span checks conducted every two weeks. Level 2 checks should be conducted in between the Level 1 checks at a frequency desired by the user. Span concentrations for both levels should be between 70 and 90% of the measurement range.

Zero and span data are to be used to:

- Provide data to allow analyzer adjustment for zero and span drift;
- Provide a decision point on when to calibrate the analyzer;
- Provide a decision point on invalidation of monitoring data.

Items 1 and 2 are described in detail in Subsection 9.1.3 of Section 2.0.9 (Q.A. Handbook). Item 3 is described in Subsection 9.1.4 of the same section.

Refer to the Troubleshooting Chapter 11 of this manual if the instrument is not within the allowed variations.

8.3.1. Zero/Span Check Procedures

The Zero and Span calibration can be checked a variety of different ways. They include:

Manual Zero/Span Check - Zero and Span can be checked from the front panel keyboard. Follow the procedures described in Section 7.3 and 7-6 of this manual using calibrated SO2 span gas (see Table 7-1) only.

Automatic Zero/Span Checks - After the appropriate setup, Z/S checks can be performed automatically every night. Follow the procedure described in Section 7.9 of this manual using calibrated SO2 span gas (see Table 7-1).

Zero/Span checks via remote contact closure = Zero/Span checks can be initiated via remote contact closures on the rear panel. Follow the procedures described Section 7.7.1 of this manual using calibrated SO2 span gas (see Table 7-1).

Zero/Span via RS-232 port - Z/S checks can be controlled via the RS-232 port. See Section6.12.2 and Appendix A-6 of this manual for more details.

8.4. Precisions Calibration Procedures and Checks

Calibration must be performed with a calibrator that meets all conditions specified in Subsection 2.9.2 (Q.A. Handbook). The user should be sure that all flow meters are calibrated under the conditions of use against a reliable standard. All volumetric flow rates should be corrected to 25°C (77°F) and 760mm (29.92in) Hg. Make sure the calibration system can supply the range of the concentration at a sufficient flow over the whole range of concentration that will be encountered during calibration.
All operational adjustments to the M6200E should be completed prior to the calibration. The following software features must be set into the desired state before calibration.

- Single range selection. See Section 6.7.4 of this manual. If the instrument will be used more than one range, it should be calibrated separately on each applicable range.
- Automatic temperature/pressure compensation.
- Alternate units, make sure ppb units are selected for EPA monitoring. See Section 6.7.7.

The analyzer should be calibrated on the same range for monitoring. If the **AUTO** range mode is selected, the highest of the ranges will result in the most accurate calibration, and should be used.

8.4.1. Precision Calibration

To perform a precision calibration, the instrument set up:

- Input sources of zero air and calibrated SO₂ span gas (see Table 7-1).
- Follow the procedures described in Section 7.2 for analyzer’s with no valve options or with an IZS valve option (Do not use the method defined in Section 7.7).
- Follow the procedures described in installed and Section 7.5 for analyzer’s with Z/S options installed.

8.4.2. Precision Check

A periodic check is used to assess the data for precision. A one-point precision check must be carried out at least once every 2 weeks on each analyzer at an SO₂ concentration between 0.08 and 0.10 ppm. The analyzer must be operated in its normal sampling mode, and the precision test gas must pass through all filters, scrubbers, conditioners, and other components used during normal ambient sampling. The standards from which precision check test concentrations are obtained must be traceable to NIST-SRM (see Table 7-1). Those standards used for calibration or auditing may be used.

To perform a precision check, the instrument set up; sources of zero air and SO₂ span gas and procedures should conform to those described in Section 7.3 for analyzer’s with no valve options or with an IZS valve option installed and Section 7.6 for analyzer’s with Z/S options installed with the following exception:

- Connect the analyzer to a precision gas that has an SO₂ concentration between 0.08 and 0.10 ppm. If a precision check is made in conjunction with a zero/span check, it must be made prior to any zero or span adjustments.

Record this value. Information from the check procedure is used to assess the precision of the monitoring data; see 40 CFR 58 for procedures for calculating and reporting precision.

8.5. Dynamic Multipoint Span Calibration

Dynamic calibration involves introducing gas samples of known concentrations to an instrument in order to record the instruments performance at a predetermined sensitivity and to derive a
calibration relationship. A minimum of three reference points and one zero point uniformly spaced covering 0 to 90 percent of the operating range are recommended to define this relationship.

The analyzer's recorded response is compared with the known concentration to derive the calibration relationship.

To perform a precision check, the instrument set up, sources of zero air and sample gas should conform to those described in Section 7.2.

Follow the procedures described in section 7.2 for calibrating the zero points.

For each mid point:

\[\text{SPAN CAL M} \]
\[\text{RANGE = 500.000 PPB} \]
\[\text{SO2 = X.XXX} \]
\[< 	ext{TST} \]
\[< 	ext{CAL} \]
\[< 	ext{SETUP} \]

\[\text{SAMPLE} \]
\[\text{SO2 STB = X.XXX PPB} \]
\[< 	ext{TST} \]
\[< 	ext{CAL} \]
\[< 	ext{SETUP} \]

ACTION:
Allow calibration gas diluted to proper concentration for Midpoint N+1 to enter the sample port.

Set the Display to show the SO2 STB test function. This function calculates the stability of the NO/NOx measurement.

Wait until SO2 STB falls below 0.5 ppb. This may take several minutes.

SAMPLE
SPAN CAL M
RANGE = 500.000 PPB
SO2 = X.XXX
< TST TST >
ZERO SPAN CONC
EXIT

Record the SO2 reading as displayed on the instrument's front panel.

SAMPLE
SO2 STB = X.XXX PPB
< TST TST >
CALZ
CALS
SETUP

Press EXIT to Return to the Main SAMPLE Display.

ACTION:
Allow Calibration Gas diluted to proper concentration for Midpoint N+1 to enter the sample port.

Set the Display to show the SO2 STB test function. This function calculates the stability of the NO/NOx measurement.

8.6. Special Calibration Requirements for Independent Range or Auto Range

If Independent Range or Auto Range is selected, then it should be calibrated for both Range1 and Range2 separately.

For zero and span point calibration, follow the procedure described in Section 7.2. Repeat the procedure for both the **HIGH** and **LOW** Ranges.
8.7. References

User Notes:
9. INSTRUMENT MAINTENANCE

Predictive diagnostic functions including data acquisition, failure warnings and alarms built into the analyzer allow the user to determine when repairs are necessary without performing unnecessary, preventative maintenance procedures. There is, however, a minimal number of simple procedures that, when performed regularly, will ensure that the analyzer continues to operate accurately and reliably over its lifetime. Repair and troubleshooting procedures are covered in Chapter 9 and Chapter 11 of this manual.

9.1. Maintenance Schedule

Table 9-1 shows a typical maintenance schedule for the analyzer. Please note that in certain environments (i.e. dusty, very high ambient pollutant levels) some maintenance procedures may need to be performed more often than shown.

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A span and zero calibration check must be performed following some of the maintenance procedures listed below.</td>
</tr>
<tr>
<td>See Sections 7.3, 7.6 and 7.9 for instructions on performing checks.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CAUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Risk of electrical shock. Disconnect power before performing any operations that require entry into the interior of the analyzer.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The operations outlined in this chapter must be performed by qualified maintenance personnel only.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>The front panel of the analyzer is hinged at the bottom and may be opened to gain access to various components mounted on the panel itself or located near the front of the instrument (such as the particulate filter). A locking screw locate at the top center of the panel and two fasteners located in the upper right and left corners of the panel lock it shut (Figure 3-10).</td>
</tr>
<tr>
<td>ITEM</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>SO2 scrubber</td>
</tr>
<tr>
<td>H2S → SO2 Converter Catalyst</td>
</tr>
<tr>
<td>¹Particulate filter</td>
</tr>
<tr>
<td>Verify test functions</td>
</tr>
<tr>
<td>Zero/span check</td>
</tr>
<tr>
<td>Zero/span calibration</td>
</tr>
<tr>
<td>¹External zero air scrubber (optional)</td>
</tr>
<tr>
<td>¹Perform flow check</td>
</tr>
<tr>
<td>¹Sample chamber optics</td>
</tr>
<tr>
<td>¹Critical flow orifice & sintered filters</td>
</tr>
<tr>
<td>Internal IZS Permeation Tube</td>
</tr>
<tr>
<td>Perform pneumatic leak check</td>
</tr>
<tr>
<td>²Pump diaphragm</td>
</tr>
<tr>
<td>PMT sensor hardware calibration</td>
</tr>
</tbody>
</table>

¹ These Items are required to maintain full warranty, all other items are strongly recommended.
² A pump rebuild kit is available from Teledyne Analytical Instruments Customer Service including all instructions and required parts (see Appendix B for part
9.2. Predictive Diagnostics

The analyzer’s test functions can be used to predict failures by looking at trends in their values. The current value of these functions can be viewed via the front panel, recorded via the iDAS system (see Section 6.11) or even downloaded via the internet from a remote location using Teledyne Analytical Instruments’ APICOM control software can be used to download and review this data (see Section 6.12.2.8).

<table>
<thead>
<tr>
<th>TEST FUNCTION</th>
<th>IDAS FUNCTION</th>
<th>CONDITION</th>
<th>BEHAVIOR</th>
<th>INTERPRETATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2S STB(^1)</td>
<td>N/A</td>
<td>Zero Gas</td>
<td>≤ 1 ppb with zero air</td>
<td>Increasing • Pneumatic Leaks – instrument & sample system • Detector deteriorating</td>
</tr>
<tr>
<td>PRES</td>
<td>SMPPRS</td>
<td>sample gas</td>
<td>Constant within atmospheric changes</td>
<td>Fluctuating • Developing leak in pneumatic system</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slowly increasing</td>
<td>• Flow path is clogging up. - Check critical flow orifice & sintered filter. - Replace particulate filter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slowly decreasing</td>
<td>• Developing leak in pneumatic system to vacuum (developing valve failure)</td>
</tr>
<tr>
<td>DRK PMT</td>
<td>DRKPMT</td>
<td>PMT output when UV Lamp shutter closed</td>
<td>Constant within ±10 of check-out value</td>
<td>Significantly increasing • PMT cooler failure • Shutter Failure</td>
</tr>
<tr>
<td>SO(_2) Concentration</td>
<td>CONC1</td>
<td>At span with IZS option installed</td>
<td>Constant response from day to day</td>
<td>Decreasing over time • Change in instrument response • Degradation of IZS permeation tube</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Standard configuration at span</td>
<td>stable for constant concentration</td>
<td>Decreasing over time • Drift of instrument response; UV Lamp output is excessively low; clean RCEL window</td>
</tr>
<tr>
<td>SAMP FL</td>
<td>SMPFLW</td>
<td>Standard Operation</td>
<td>Stable</td>
<td>Slowly Decreasing • Flow path is clogging up. - Check critical flow orifice & sintered filter. - Replace particulate filter</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fluctuating</td>
<td>• Leak in gas flow path.</td>
</tr>
<tr>
<td>LAMP RATIO</td>
<td>LAMPR</td>
<td>Standard Operation</td>
<td>Stable and near 100%</td>
<td>Fluctuating • UV detector wearing out • UV source Filter developing pin holes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Slowly Increasing</td>
<td>• UV detector wearing out • Opaque oxides building up on UV source Filter • UV lamp aging</td>
</tr>
<tr>
<td>H2S OFFS(^1)</td>
<td>OFSET1</td>
<td>During Zero Cal</td>
<td>Stable</td>
<td>Slowly Increasing or Decreasing • Bad PMT • Failed HVPS • Leak in sample gas flow • Contamination in zero gas source.</td>
</tr>
<tr>
<td>H2S SLOPE(^1)</td>
<td>SLOPE1</td>
<td>During Span Cal</td>
<td>Stable</td>
<td>Slowly Increasing or Decreasing • UV lamp aging • UV detector wearing out • Leak in Sample gas or calibration gas flow path • Deterioration / contamination of calibration gas source(s)</td>
</tr>
</tbody>
</table>

\(^1\) Shown as they appear when analyzer is in H\(_2\)S mode. In SO\(_2\) mode appear as SO\(_2\) OFFS & SO\(_2\) SLOPE. In multigas mode, both versions appear.
9.3. Maintenance Procedures

The following procedures need to be performed regularly as part of the standard maintenance of the Model 6200E.

9.3.1. Changing the Sample Particulate Filter

The particulate filter should be inspected often for signs of plugging or excess dirt. It should be replaced according to the service interval in Table 9-1 even without obvious signs of dirt. Filters with 1 and 5 µm pore size can clog up while retaining a clean look. We recommend handling the filter and the wetted surfaces of the filter housing with gloves and tweezers. Do not touch any part of the housing, filter element, PTFE retaining ring, glass cover and the O-ring with bare hands.

To change the filter according to the service interval in Table 9-1:

1. Turn OFF the analyzer to prevent drawing debris into the sample line.
2. Open the M6200E’s hinged front panel and unscrew the knurled retaining ring of the filter assembly.
3. Carefully remove the retaining ring, glass window, PTFE O-ring and filter element.
4. Replace the filter element, carefully centering it in the bottom of the holder.

Figure 9-1: Sample Particulate Filter Assembly
5. Re-install the PTFE O-ring with the notches facing up, the glass cover, then screw on the hold-down ring and hand-tighten the assembly. Inspect the (visible) seal between the edge of the glass window and the O-ring to assure proper gas tightness.

6. Re-start the analyzer.

9.3.2. Changing the IZS Permeation Tube

1. Turn off the analyzer, unplug the power cord and remove the cover.

2. Locate the IZS oven in the rear left of the analyzer.

3. Remove the top layer of insulation if necessary.

4. Unscrew the black aluminum cover of the IZS oven (3 screws) using a medium Phillips-head screw driver. Leave the fittings and tubing connected to the cover.

5. Remove the old permeation tube if necessary and replace it with the new tube. Make sure that the tube is placed into the larger of two holes and that the open permeation end of the tube (plastic) is facing up.

6. Re-attach the cover with three screws and make sure that the sealing O-ring is properly in place and that the three screws are tightened evenly.

7. Replace the analyzer cover, plug the power cord back in and turn on the analyzer.

8. Carry out an IZS span check to see if the new permeation device works properly. The permeation rate may need several days to stabilize.

WARNING

Do not leave instrument turned off for more than 8 hours without removing the permeation tube. Do not ship the instrument without removing the permeation tube. The tube continues to emit gas, even at room temperature and will contaminate the entire instrument.

9.3.3. Maintaining the SO₂ Scrubber

The SO₂ scrubber of your M6200E utilizes a consumable compound to absorb SO₂ from the sample gas that must be replaced periodically in order for the analyzer to continue measuring H₂S accurately and reliability.

This material is capable of efficiently scrubbing SO₂ for up to 1000 ppm/hours. This means that if the SO₂ content of the sample gas is typically around 100 ppb, the scrubber will function for approximately 10 000 hours, a little over 13 months. If, however, the typical ambient SO₂ level of the sample gas is 250 ppb, the scrubber would only last for approximately 4000 hours or about 5 ½ months.

9.3.3.1. Predicting When the SO₂ Scrubber Should Be Replaced.

To determine how long the SO₂ scrubber will operate efficiently:
9. Measure the amount of SO₂ in the sample gas.
 - If your M6200E has the multigas measurement options activated, this can be done by following instructions found in Section 6.8.1 and selecting \textit{MEASURE MODE = SO₂}.
 - Let the analyzer operate for 30 minutes, then note the SO₂ concentration.

10. Divide 1 000 by the SO₂ concentration.

 \textbf{EXAMPLE:} If the SO₂ concentration is 125 ppb:
 \begin{align*}
 \text{Operational hours} &= \frac{1000 \text{ ppm/hr}}{0.125 \text{ ppm}} \\
 \text{Operational hours} &= \frac{100 000 \text{ ppb/hr}}{125 \text{ ppb}} \\
 \text{Operational hours} &= 8000 \text{ hrs}
 \end{align*}

9.3.3.2. Checking the Function of the SO₂ Scrubber

To check to see if your SO₂ scrubber is operating properly:

11. With the analyzer set of H₂S measurement mode, introduce gas mixture into the sample gas stream that includes SO₂ at a concentration of at least 20% of the reporting range currently selected (see Section 6.7.3). For example, if the analyzer is set for a Single Range & 500 ppb, a concentration of 1000 ppb would be appropriate.

12. An increase of more than 2% in the H₂S reading is an indication that the efficiency of the scrubber is decreasing to the point that the absorbing material should be replaced.

9.3.3.3. Changing the SO₂ Scrubber Material

1. Input zero air for 5 minutes

2. Turn off analyzer

3. Locates the SO₂ scrubber cartridge in the front of the analyzer, looks like a big white cylinder (See Figure 3-9).

4. Undo the two 1/8 inch fittings on the top of the scrubber

5. Remove the two screws holding the scrubber to the instrument chassis and remove the scrubber

6. Take the two Teflon fitting off the instrument.

7. Empty the SO₂ scrubbing material in to a hazmat bin

8. Fill each side of the scrubber with new SO₂ scrubber material until it is \(\frac{1}{2} \) an inch from the bottom of the thread lines so about \(\frac{1}{2} \) inches from the top of the scrubber, do not fill it to high or the fitting will crush the material.

9. Remove the Teflon tape from both of the removed fittings, and re-tape them with new Teflon tape.
10. Install both fittings back onto the scrubber.

11. Put the scrubber back into the analyzer and replace the two screws on the bottom.

12. Screw the two 1/8 fittings back onto the top of the scrubber, they can be hooked up either way.

13. Return analyzer to normal operation

9.3.4. Changing the External Zero Air Scrubber

The chemicals in the external scrubber need to be replaced periodically according to Table 9-1 or as needed. This procedure can be carried out while the instrument is running. Make sure that the analyzer is not in ZERO calibration mode.

1. Locate the scrubber on the outside rear panel. Figure 9-2 shows an exploded view of the scrubber assembly.

![Zero Air Scrubber Assembly Diagram](image)

Figure 9-2: Zero Air Scrubber Assembly

2. Remove the old scrubber by disconnecting the 1/4” plastic tubing from the particle filter using 9/16” and 1/2” wrenches.

3. Remove the particle filter from the cartridge using 9/16” wrenches.

4. Unscrew the top of the scrubber canister and discard the Purafil® and charcoal contents. Make sure to abide to local laws about discarding these chemicals. The rebuild kit (listed in Appendix B) comes with a Material and Safety Data Sheet, which contains more information on these chemicals.
5. Refill the scrubber with charcoal at the bottom, a white felt-divider and the Purafil® chemical at the top.

6. Put another felt-divider on top of that, then close the cartridge with the screw-top cap.

7. Tighten the cap on the scrubber - hand-tight only.

8. Replace the DFU filter with a new unit and discard the old.

9. Replace the scrubber assembly into its clips on the rear panel.

10. Reconnect the plastic tubing to the fitting of the particle filter.

11. Adjust the scrubber cartridge such that it does not protrude above or below the analyzer in case the instrument is mounted in a rack. If necessary, squeeze the clips for a tighter grip on the cartridge.

9.3.5. Maintaining the $H_2S \rightarrow SO_2$ Converter

The catalyst contained in the $H_2S \rightarrow SO_2$ converter of your M6200E must be replaced periodically in order for the analyzer to continue measuring H_2S accurately and reliability.

This material is capable of efficiently converting H_2S into SO_2 for up to 6000 ppm/hours. This means that if the H_2S content of the sample gas is typically around 600 ppb, the scrubber will function for approximately 10 000 hours, a little over 13 months. If, however, the typical ambient H_2S level of the sample gas is 1000 ppb, the scrubber would only last for approximately 6000 hours or about 8 months.

9.3.5.1. Predicting When the Converter Catalyst Should Be Replaced.

To determine how long the $H_2S \rightarrow SO_2$ converter will operate efficiently:

1. Measure the amount of H_2S in the sample gas.

2. Divide 6000 by the H_2S concentration.

 EXAMPLE: If the H_2S concentration is 750 ppb:

 Operational hours = $\frac{6000 \text{ ppm/hr}}{0.75 \text{ ppm}}$

 Operational hours = $\frac{100 \text{ 000 ppb/hr}}{750 \text{ ppb}}$

 Operational hours = 8000 hrs

9.3.5.2. Checking the Efficiency of the $H_2S \rightarrow SO_2$ Converter

To check to see if your $H_2S \rightarrow SO_2$ converter is operating properly:

1. Set the analyzer to SO_2 measurement mode (see Section 6.8.1).

2. Supply a gas with a known concentration of SO_2 to the sample gas inlet of the analyzer.

3. Wait until the analyzer’s SO_2 concentration measurement stabilizes. This can be determined by setting the analyzer’s display to show the $SO_2 \text{ STB}$ test function (see Section 6.2.1) $SO_2 \text{ STB}$ should be 0.5 ppb or less before proceeding.
4. Record the stable SO₂ concentration

5. Set the analyzer to H₂S measurement mode (see Section 6.8.1).

6. Supply a gas with a known concentration of H₂S equal to that of the SO₂ gas used in steps 2-4 above, to the sample gas inlet of the analyzer.

7. Wait until the analyzer’s SO₂ concentration measurement stabilizes. This can be determined by setting the analyzer’s display to show the H₂S STB test function (see Section 6.2.1) H₂S STB should be 0.5 ppb or less before proceeding.

8. Record the stable H₂S concentration

9. Divide the H₂S concentration by the SO₂ concentration

 EXAMPLE: If the SO₂ and H₂S concentration of the two test gases used is 500 ppb:

 Measured SO₂ concentration = 499.1 ppb
 Measured H₂S concentration = 490.3 ppb

 Converter Efficiency = 490.3 ÷ 499.1
 Converter Efficiency = 0.982 (98.2%)

10. It is recommended that the H₂S → SO₂ converter catalyst material be replaced if the converter efficiency falls below 96% or whatever efficiency rating is specified by local regulatory requirements.

9.3.5.3. Changing the H₂S → SO₂ Converter Catalyst Material

The H₂S → SO₂ converter is located in the center of the instrument, see Figure 3-9 for location, and 9-3 for the assembly. The converter is designed for replacement of the cartridge only, the heater with built-in thermocouple can be reused.

- Turn off the analyzer power, remove the cover and allow the converter to cool.
- Remove the top lid of the converter as well as the top layers of the insulation until the converter cartridge can be seen.

CAUTION

The converter operates at 315° C. Severe burns can result if the assembly is not allowed to cool. Do not handle the assembly until it is at room temperature. This may take several hours.

- Remove the tube fittings from the converter.
- Disconnect the power and the thermocouple of the converter. Unscrew the grounding clamp of the power leads with a Phillips-head screw driver.
- Remove the converter assembly (cartridge and band heater) from the can. Make a note of the orientation of the tubes relative to the heater cartridge.
- Unscrew the band heater and loosen it, take out the old converter cartridge.
• Wrap the band heater around the new replacement cartridge and tighten the screws using a high-temperature anti-seize agent such as copper paste. Make sure to use proper alignment of the heater with respect to the converter tubes.

• Replace the converter assembly, route the cables through the holes in the housing and reconnect them properly. Reconnect the grounding clamp around the heater leads for safe operation.

• Re-attach the tube fittings to the converter and replace the insulation and cover.

• Replace the instrument cover and power up the analyzer.

9.3.6. Cleaning the Sample chamber

The sample chamber should be cleaned whenever troubleshooting suggests. A dirty sample chamber will cause excessive noise, drifting zero or span values or low response.

To clean the sample chamber, it is necessary to remove it from the sensor housing. Use the following guide:

1. Turn off the instrument power and vacuum pump.

2. Disconnect the black 1/4” exhaust tube and the 1/8” sample and ozone air tubes from the sample chamber. Disconnect the heater/thermistor cable.

3. Remove four screws holding the sample chamber to the PMT housing and lift the cell and manifold out.
4. The sample chamber will separate into two halves, the stainless steel manifold assembly and the black plastic sample chamber with window, stainless steel cylinder and O-rings.

5. The sample chamber (both plastic part and stainless steel cylinder) and glass window should be cleaned with de-ionized water and a clean lint free cloth and dried thereafter.

6. Usually it is not necessary to clean the sample and ozone flow orifices since they are protected by sintered filters. If tests show that cleaning is necessary, refer to section 9.3.7. below on how to clean/replace the critical flow orifice.

7. Do not remove the sample and ozone nozzles. They are Teflon threaded and require a special tool for reassembly. If necessary, the manifold with nozzles attached can be cleaned in an ultrasonic bath.

8. Reassemble in proper order and re-attach onto sensor housing. Reconnect pneumatics and heater connections, then re-attach the pneumatic sensor assembly and the cleaning procedure is complete.

9.3.7. Cleaning or Changing Critical Flow Orifices

A critical flow orifice, located on the exhaust manifold maintains the proper flow rate of gas through the M6200E analyzer. Refer to section 10.3.3 for a detailed description of its functionality and location. Despite the fact this these device is protected by sintered stainless steel filters, it can, on occasion, clog, particularly if the instrument is operated without a sample filter or in an environment with very fine, sub-micron particle-size dust.

The M6200E introduces an orifice holder that makes changing the orifice very easy. In fact, it is recommended to keep spare orifice holder assemblies at hand to minimize downtime and swap orifices in a matter of a few minutes. Appendix B lists several complete spare part kits for this purpose. To clean or replace a critical flow orifice, do the following:

- Turn off power to the instrument and vacuum pump. Remove the analyzer cover and locate the reaction cell (Section 3.1 and Figure 3-9).
- Unscrew the 1/8” sample and ozone air tubes from the reaction cell
- For orifices on the reaction cell: Unscrew the orifice holder with a 9/16” wrench. This part holds all components of the critical flow assembly as shown in Figure 9-4. Appendix B contains a list of spare part numbers.
- For orifices in the vacuum manifold: the assembly is similar to the one shown in Figure 9-4, but without the orifice holder, part number 04090, and bottom O-ring OR34 and with an NPT fitting in place of the FT 10 fitting. After taking off the connecting tube, unscrew the NPT fitting.
- Take out the components of the assembly: a spring, a sintered filter, two O-rings and the orifice. For the vacuum manifold only, you may need to use a scribe or pressure from the vacuum port to get the parts out of the manifold.
- Discard the two O-rings and the sintered filter and clean the critical flow orifice in a ultrasonic cleaner for about 30 minutes using methanol. Let the part dry.
- Re-assemble the parts as shown in Figure 9-4 and re-connect them to the reaction cell manifold or the vacuum manifold.
• Reconnect all tubing, power up the analyzer and pump and - after a warm-up period of 30 minutes, carry out a leak test as described in Section 11.5.1.

9.3.8. Checking for Light Leaks

When re-assembled or operated improperly, the M6200E can develop small leaks around the PMT, which let stray light from the analyzer surrounding into the PMT housing. To find such light leaks, follow the procedures below.

CAUTION:

this procedure can only be carried out with the analyzer running and its cover removed. This procedure should only be carried out by qualified personnel.

1. Scroll the TEST functions to PMT.
2. Supply zero gas to the analyzer.
3. With the instrument still running, carefully remove the analyzer cover. Take extra care not to touch any of the inside wiring with the metal cover or your body. Do not drop screws or tools into a running analyzer!
4. Shine a powerful flashlight or portable incandescent light at the inlet and outlet fitting and at all of the joints of the sample chamber as well as around the PMT housing. The PMT value should not respond to the light, the PMT signal should remain steady within its usually noise.
5. If there is a PMT response to the external light, symmetrically tighten the sample chamber mounting screws or replace the 1/4” vacuum tubing with new, black PTFE tubing (this tubing will fade with time and become transparent). Often, light leaks are also caused by O-rings being left out of the assembly.

6. Carefully replace the analyzer cover.

7. If tubing or O-rings were changed, carry out a leak check (Section 11.5.1).

User Notes:
10. THEORY OF OPERATION

The M6200E UV Fluorescence H₂S Analyzer is a microprocessor controlled analyzer that determines the concentration of hydrogen sulfide (H₂S), in a sample gas drawn through the instrument. It requires that sample and calibration gases be supplied at ambient atmospheric pressure in order to establish a constant gas flow through the sample chamber where the H₂S in the sample gas is converted into SO₂ which is then exposed to ultraviolet light causing the SO₂ to become excited (SO₂*). As these SO₂* molecules decay back into SO₂ they fluoresce. The instrument measures the amount of fluorescence to determine the amount of SO₂ is present in the sample chamber and by inference therefore the amount of H₂S present in the sample gas.

Calibration of the instrument is performed in software and usually does not require physical adjustments to the instrument. During calibration, the microprocessor measures the sensor output signal when gases with known amounts of H₂S at various concentrations are supplied and stores these measurements in memory. The microprocessor uses these calibration values along with other performance parameters such as the PMT dark offset, UV lamp ratio, and the amount of stray light present and measurements of the temperature and pressure of the sample gas to compute the final H₂S concentration.

This concentration value and the original information from which it was calculated are stored in the unit’s internal data acquisition system and reported to the user through a vacuum fluorescent display or as electronic data via several communication ports.

This concentration value and the original information from which it was calculated are stored in the unit’s internal data acquisition system (iDAS Section 6.11) and reported to the user through a vacuum fluorescent display or several communication ports.

10.1. Measurement Principle

10.1.1. H₂S Conversion

The M6200E H₂S analyzer is basically a SO₂ analyzer with a H₂S → SO₂ conversion stage inserted into the gas stream before the sample gas enters the sample chamber.

The H₂S to SO₂ converter, receives sample gas from which the SO₂ has been removed by a scrubber. Once the naturally occurring SO₂ is removed from the sample gas, the special converter changes the H₂S in the sample stream to SO₂ using a high-temperature catalytic oxidation.

The chemical process is:

\[2H_2S + 3O_2 \rightarrow 2H_2O + 2SO_2 \]

The converter is a heated stainless steel core containing a catalyst across which the sample gas passes just before induction into the reaction cell. The temperature of the converter is maintained by a heater controlled by the CPU via the I²C bus and the relay card. The converter is enclosed in high-temperature insulation and encased in a stainless steel housing.

The converter is most efficient when it operates at 315°C, converting 95% of the H₂S into SO₂. Converter temperature is viewable via the front panel as the test function CONV TEMP (see Section 6.2.1) and can also be output via the test channel analog output (see Section 6.9.10). A
warning message, **CONV TEMP WARNING** (see Section 6.2.2) will be issued by the CPU if the converter’s temperature is below 310°C or above 320°C.

When the converter is operating at peak efficiency there is a nearly 1:1 relationship between the amount of H₂S entering the catalytic converter and the amount of SO₂ leaving it. Therefore, by measuring the amount of SO₂ in the gas after it leaves the converter, the amount of H₂S originally present on the sample gas can be directly inferred. This is accomplished by measuring the ultraviolet fluorescence of the SO₂ in the sample chamber.

10.1.2. SO₂ Ultraviolet Fluorescence

The physical principle of the M6200E’s measurement method relies on the fluorescence that occurs when Sulfur dioxide (SO₂) is excited by ultraviolet light with wavelengths in the range of 190 nm - 230 nm. This reaction is a two-step process.

The first stage (Equation 10-1) occurs when SO₂ molecules are struck by ultraviolet photons of the appropriate wavelength (19 nm - 230 nm). The SO₂ retains some excess energy that causes one of the electrons of the SO₂ molecule to move to a higher energy orbital state. In the case of the Model 6200E, a band pass filter between the source of the UV light and the affected gas limits the wavelength of the UV light to approximately 214 nm.

\[
SO₂ + h\nu_{214nm} \xrightarrow{Ia} SO₂^*
\]

(Equation 10-1)

The second stage of this reaction occurs after the SO₂ reaches its excited state (SO₂*). Because the system will seek the lowest available stable energy state, the SO₂* molecule quickly returns to its ground state (Equation 10-3) by giving off the excess energy in the form of a photon (hv). The wavelength of this fluoresced light is also in the ultraviolet band but at a longer (lower energy) wavelength centered at 330 nm.

\[
SO₂^* \xrightarrow{kF} SO₂ + h\nu_{330nm}
\]

(Equation 10-2)

Obviously the more SO₂ that is present in the sample gas the more fluorescence will be detected in the sample chamber. Unfortunately there are several other factors that also can affect the amount of fluorescence detected by the analyzer.

For instance, the amount of SO₂* is dependent on the average intensity of the UV light and not its peak intensity because some of the photons are absorbed by the SO₂ as the light travels through the sample gas.
The equation for defining the average intensity of the UV light (I_a) is:

$$I_a = I_0 \left[1 - \exp(-a x (SO_2)) \right]$$

Where:

- I_0 = Intensity of the excitation UV light.
- a = The absorption coefficient of SO$_2$.
- SO$_2$ = Concentration of SO$_2$ in the sample chamber.
- x = The distance between the UV source and the SO$_2$ molecule(s) being affected (path length).
Another factor affecting the amount of detectable UV present is the rate at which this reaction occurs \((k) \), which varies depending on the temperature of the \(\text{SO}_2^{*} \). The warmer the gas, the faster the individual molecules decay back into their ground state and the more photons of UV light are given off per unit of time.

\[
F = k(\text{SO}_2^{*})
\]

Where:

- \(F \) = the amount of fluorescent light given off.
- \(k \) = The rate at which the \(\text{SO}_2^{*} \) decays into \(\text{SO}_2 \).
- \(\text{SO}_2 \) = Amount of excited \(\text{SO}_2 \) in the sample chamber.

In summary, the amount of fluorescence is

- Indirectly affected by the temperature of the gas and the factors from equation 10-2 above (concentration of \(\text{SO}_2 \); intensity of UV light; path length of the UV light) and;
- Directly affected by two factors (equation 10-4): the rate of the reaction and the amount of \(\text{SO}_2^{*} \) present.

So, when the path length of exciting light is short; no interfering gases are present; no interfering light is present and both the temperature of the gas and the intensity of the light are known and compensated for; the amount of fluorescent light emitted \((F) \) is directly related to the concentration of the \(\text{SO}_2 \) in the Sample Chamber.

The Model 6200E UV Fluorescence \(\text{SO}_2 \) Analyzer is specifically designed to create these circumstances.

- The light path is very short.
- The optical design reduces the effects of stray light geometrically and spectrally.
- A special hydrocarbon scrubber removes the most common interfering gases from the sample gas.
- A reference detector measures the intensity of the available excitation UV light and is used to remove effects of lamp drift.
- Finally, the temperature of the sample gas is measured and controlled via heaters attached to the sample chamber.

The net result is that any variation in UV fluorescence can be directly attributed to changes in the concentration of \(\text{SO}_2 \) in the sample gas.

10.2. The UV Light Path

The optical design of the Model 6200E’s sample chamber optimizes the fluorescent reaction between \(\text{SO}_2 \) and UV Light (Figure 10-2) and assures that only UV light resulting from the decay of \(\text{SO}_2^{*} \) into \(\text{SO}_2 \) is sensed by the instrument’s fluorescence detector.

UV radiation is generated by a lamp specifically designed to produce a maximum amount of light of the wavelength needed to excite \(\text{SO}_2 \) into \(\text{SO}_2^{*} \) (330 nm) and a special reference detector.
circuit constantly measures lamp intensity (see Equation 10-2). A Photo Multiplier Tube (PMT) detects the UV given off by the SO_2^* decay (214 nm) and outputs an analog signal. Several focusing lenses and optical filters make sure that both detectors are exposed to an optimum amount of only the right wavelengths of UV. To further assure that the PMT only detects light given off by decaying SO_2^* the pathway of the excitation UV and field of view of the PMT are perpendicular to each other and the inside surfaces of the sample chamber are coated with a layer of black Teflon® that absorbs stray light.

![Figure 10-2: UV Light Path](image)

10.2.1. UV Source Lamp

The source of excitation UV light for the Model 6200E is a low pressure zinc-vapor lamp. An AC voltage heats up and vaporizes zinc contained in the lamp element creating a light-producing plasma arc. Zinc-vapor lamps are preferred over the more common mercury-vapor lamps for this application because they produce very strong emission levels at the wavelength required to convert SO_2 to SO_2^*, 213.9 nm (see Figure 10-4).

The lamp used in the Model 6200E is constructed with a vacuum jacket surrounding a double-bore lamp element (Figure 10-3). The vacuum jacket isolates the plasma arc from most external temperature fluctuations. The jacket also contains the thermal energy created by the lamps operation thereby helping the lamp heat up to and maintain proper vaporization temperature. Light is emitted through a 20 mm x 5 mm portal.
10.2.2. The Reference Detector

A vacuum diode UV detector that converts UV light to a DC current is used to measure the intensity of the excitation UV source lamp. Its location, directly across from the source lamp at the back of a narrow tube-shaped light trap, places it directly in the path of the excitation UV light. A window transparent to UV light provides an air-proof seal that prevents ambient gas from contaminating the sample chamber. The shape of the light trap and the fact that the detector is blind to wavelengths other than UV means no extra optical filtering is needed.

10.2.3. The PMT

The amount of fluoresced UV produced in the sample chamber is much less than the intensity of excitation UV source lamp (see Figure 10-4). Therefore a much more sensitive device is needed to detect this light with enough resolution to be meaningful. The Model 6200E uses a Photo Multiplier Tube or PMT for this purpose (see 10.4.4 for more details regarding the electronic operation of the PMT).

10.2.4. Optical Filters

The Model 6200E analyzer uses two stages of optical filters to enhance performance. The first stage conditions the UV light used to excite the SO$_2$ by removing frequencies of light that are not needed to produce SO$_2^*$. The second stage protects the PMT detector from reacting to light not produced by the SO$_2^*$ returning to its ground state.

10.2.4.1. UV Source Optical Filter

Zinc-vapor lamps output light at other wavelengths beside the 214nm required for the SO$_2 \rightarrow$ SO$_2^*$ transformation including a relatively bright light of the same wavelength at which SO$_2^*$ fluoresces as it returns to its SO$_2$ ground state (330 nm). In fact, the intensity of the light emitted by the UV lamp at 330nm is so bright, nearly five orders of magnitude brighter than that resulting from the SO$_2^*$ decay, it would drown out the SO$_2^*$ fluorescence.
To solve this problem, the light emitted by the excitation UV lamp passes through a bandpass filter that screens out photons with wavelengths outside the spectrum required to excite SO$_2$ into SO$_2^*$. (Figure 10-4).

10.2.4.2. PMT Optical Filter

The PMT used in the Model 6200E reacts to a wide spectrum of light which includes much of the visible spectrum and most of the UV spectrum. Even though the 214 nm light used to excite the SO$_2$ is focused away from the PMT, some of it scatters in the direction of the PMT as it interacts with the sample gas. A second optical bandpass filter placed between the sample chamber (see Figure 10-2) and the PMT strips away light outside of the fluorescence spectrum of decaying SO$_2^*$ (see Figure 10-5) including reflected UV from the source lamp and other stray light.
10.2.5. Optical Lenses

Two optical lenses are used to focus and optimize the path of light through the sample chamber.

A lens located between PMT and the sample chamber collects as much of the fluoresced UV created there as possible and focuses it on the most sensitive part of the PMT’s photo cathode.

Another lens located between the excitation UV source lamp and the sample chamber collimates the light emitted by the lamp into a steady, circular beam and focuses that beam directly onto the reference detector. This allows the reference detector to accurately measure the effective intensity of the excitation UV by:

Eliminating the effect of reflected light from the UV lamp reaching the PMT.

Making sure that all of the light emitted by the source lamp, passed through the 214 nm filter and not absorbed by the SO₂ reaches the reference detector. Conversely, this also makes sure that the volume of sample gas affected by the excitation beam is similar to the volume of fluorescing SO₂* being measured by the PMT, eliminating a possible source of measurement offset.

10.2.6. Measurement Interferences

It should be noted that the fluorescence method for detecting H₂S is subject to interference from a number of sources. The M6200E has been successfully tested for its ability to reject interference from most of these sources.
10.2.6.1. Direct Interference

Obviously, since the M6200E measures H$_2$S by converting it to SO$_2$, the most significant interfering gas for this measurement would be ambient SO$_2$ that is present in the sample gas. The M6200E circumvents this by passing the sample gas through a chemical scrubber that removes all SO$_2$ from the sample gas before the H$_2$S \rightarrow SO$_2$ conversion takes place. This ensures that the only SO$_2$ present in the sample chamber is the result of the H$_2$S \rightarrow SO$_2$ conversion. Obviously to make sure that the analyzer operates correctly it is important to make sure that this scrubber is functioning properly.

The second most common source of interference is from other gases that fluoresce in a similar fashion to SO$_2$ when exposed to UV Light. The most significant of these is a class of hydrocarbons called poly-nuclear aromatics (PNA) of which xylene and naphthalene are two prominent examples. Nitrogen oxide fluoresces in a spectral range near to SO$_2$. For critical applications where high levels of NO are expected an optional optical filter is available that improves the rejection of NO (contact customer service for more information).

The Model 6200E Analyzer has several methods for rejecting interference from these gases. A special scrubber (kicker) mechanism removes any PNA chemicals present in the sample gas before it reaches the sample chamber. The exact wavelength of light needed to excite a specific non-SO$_2$ fluorescing gas is removed by the source UV optical filter. The light given off by Nitrogen Oxide and many of the other fluorescing gases is outside of the bandwidth passed by the PMT optical filter.

10.2.6.2. UV Absorption by Ozone

Because ozone absorbs UV Light over a relatively broad spectrum it could cause a measurement offset by absorbing some of the UV given off by the decaying SO$_2^*$ in the sample chamber. The Model 6200E prevents this from occurring by having a very short light path between the area where the SO$_2^*$ fluorescence occurs and the PMT detector. Because the light path is so short, the amount of O$_3$ needed to cause a noticeable effect would be much higher than could be reasonably expected in any application for which this instrument is intended.

10.2.6.3. Dilution

Certain gases with higher viscosities can lower the flow rate through the critical flow orifice that controls the movement of sample gas through the analyzer reducing the amount of sample gas in the sample chamber and thus the amount of SO$_2$ available to react with the UV light. While this can be a significant problem for some analyzers, the design of the Model 6200E is very tolerant of variations in sample gas flow rate and therefore does not suffer from this type of interference.

10.2.6.4. Third Body Quenching

While the decay of SO$_2^*$ to SO$_2$ happens quickly, it is not instantaneous. Because it is not instantaneous it is possible for the extra energy possessed by the excited electron of the SO$_2^*$ molecule to be given off as kinetic energy during a collision with another molecule. This in effect heats the other molecule slightly and allows the excited electron to move into a lower energy orbit without emitting a photon.
The most significant interferents in this regard are nitrogen oxide (NO), carbon dioxide (CO₂), water vapor (H₂O) and molecular oxygen (O₂). In ambient applications the quenching effect of these gasses is negligible. For stack applications where the concentrations of some or all of these may be very high, specific steps MUST be taken to remove them from the sample gas before it enters the analyzer.

10.2.6.5. Light Pollution

Because M6200E measures light as a means of calculating the amount of SO₂ present, obviously stray light can be a significant interfering factor. The Model 6200E removes this interference source in several ways.

The sample chamber is designed to be completely light tight to light from sources other than the excitation UV source lamp.

All pneumatic tubing leading into the sample chamber is completely opaque in order to prevent light from being piped into the chamber by the tubing walls.

The optical filters discussed in section 10.2.4;remove UV with wavelengths extraneous to the excitation and decay of SO₂/ SO₂*.

During instrument calibration, when the analyzer is sampling zero air (calibration gas devoid of H₂S) a measurement of the background light that is still present in the sample chamber is recorded and used to offset the value of the PMT output used to calculate the H₂S concentration.

10.3. Pneumatic Operation

CAUTION

It is important that the sample airflow system is leak-tight and not pressurized over ambient pressure. Regular leak checks should be performed on the analyzer as described in the maintenance schedule, Table 9-1. Procedures for correctly performing leak checks can be found in Section 11.5.1.

NOTE

Relative Pressure versus Absolute Pressure

In this manual vacuum readings are given in inches of mercury absolute pressure (in-Hg-A), i.e. indicate an absolute pressure referenced against zero (a perfect vacuum).
10.3.1. sample gas Flow

The Flow of gas through the M6200E UV Fluorescence H₂S Analyzer is created by a small internal pump that pulls air through the instrument.

![Diagram of M6200E Gas Flow and Location of Critical Flow Orifice](image)

Figure 10-7: M6200E Gas Flow and Location of Critical Flow Orifice

10.3.2. Multigas Measurement & H₂S → SO₂ Switching Valve.

When installed and operating the multigas measurement option allows the instrument to be configured so that it can measure either or both H₂S or SO₂. A Teflon® switching valve, activated under CPU control via the I²C buss and the relay board directs the sample gas stream through the SO₂ scrubber and H₂S → SO₂ converter (H₂S measurement mode) or directly to the sample chamber bypassing the H₂S → SO₂ converter, allowing the analyzer to measure SO₂.

When the multigas option, (Option 82) is activated, this valve switches back and forth allowing the analyzer to measure both SO₂ and H₂S (see Section 5.5). The cycle for this operation is
Table 10-1: M6200E Multigas Valve Cycle-Phases

<table>
<thead>
<tr>
<th>Gas Mode</th>
<th>H₂S → SO₂ Valve Status</th>
<th>Default Time Settings</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>H₂S</td>
<td>Gas stream directed through scrubber and converter</td>
<td>0 – 3 minutes</td>
<td>Wait period. Ensures sample chamber has been flushed of previous gas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 – 10 m</td>
<td>Analyzer measures fluorescence in sample chamber</td>
</tr>
<tr>
<td>SO₂</td>
<td>Gas stream bypasses through scrubber and converter</td>
<td>0 – 3 minutes</td>
<td>Wait period (dwell time). Ensures sample chamber has been flushed of previous gas.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 – 10 m</td>
<td>Analyzer measures fluorescence in sample chamber</td>
</tr>
</tbody>
</table>

Cycle repeats every ~20 minutes

The timing of the above cycle is set by two variables (see Appendix A-2), `MEASURE_PERIOD`, which sets the total dwell time for each gas mode, and `MEASURE_DELAY` which sets the wait period before the instrument begins making measurements after the gas mode has been switch.

10.3.3. Flow Rate Control

The Model 6200E uses a special flow control assembly located in the exhaust vacuum manifold (Figure 10-7) to maintain a constant flow rate of the sample gas through the instrument. This assembly consists of:

- A critical flow orifice.
- Two o-rings: Located just before and after the critical flow orifice, the o-rings seal the gap between the walls of assembly housing and the critical flow orifice.
- A spring: Applies mechanical force needed to form the seal between the o-rings, the critical flow orifice and the assembly housing.

10.3.3.1. Critical Flow Orifice

The most important component of this flow control assembly is the critical flow orifice.

Critical flow orifices are a remarkably simple way to regulate stable gas flow rates. They operate without moving parts by taking advantage of the laws of fluid dynamics. By restricting the flow of gas through the orifice, a pressure differential is created. This pressure differential combined with the action of the analyzer’s external pump draws the gas through the orifice.

As the pressure on the downstream side of the orifice (the pump side) continues to drop, the speed that the gas flows through the orifice continues to rise. Once the ratio of upstream pressure to downstream pressure is greater than 2:1, the velocity of the gas through the orifice reaches the speed of sound. As long as that ratio stays at least 2:1 the gas flow rate is unaffected by any fluctuations, surges, or changes in downstream pressure because such variations only travel at the speed of sound themselves and are therefore cancelled out by the sonic shockwave at the downstream exit of the critical flow orifice.
The actual flow rate of gas through the orifice (volume of gas per unit of time), depends on the size and shape of the aperture in the orifice. The larger the hole, the more gas molecules, moving at the speed of sound, pass through the orifice.

The result is that the flow rate of the gas is unaffected by degradations in pump efficiency due to age.

The critical flow orifice used in the Model 6200E is designed to provide a flow rate of 650 cm³/min.

10.3.4. Sample Particulate Filter

To remove particles in the sample gas, the analyzer is equipped with a Teflon membrane filter of 47 mm diameter (also referred to as the sample filter) with a 1 µm pore size. The filter is accessible through the front panel, which folds down, and should be changed according to the suggested maintenance schedule in Table 9-1.

10.3.5. Hydrocarbon Scrubber (Kicker)

It is very important to make sure the air supplied to sample the chamber is clear of hydrocarbons. To accomplish this task the M6200E uses a single tube permeation scrubber. The scrubber consists of a single tube of a specialized plastic that absorbs hydrocarbons very well. This tube is located within the outer flexible plastic tube shell. As gas flows through the inner tube, hydrocarbons are absorbed into the membrane walls and transported through the membrane wall and into the hydrocarbon free, purge gas flowing through the outer tube. This process is driven by the hydrocarbon partial pressure gradient between the inner and outer tubes.
In the M6200E some of the cleaned air from the inner tube is returned to be used as the purge gas in the outer tube (Figure 10-9). This means that when the analyzer is first started, the concentration gradient between the inner and outer tubes is not very large and the scrubber’s efficiency is relatively low. When the instrument is turned on after having been off for more than 30 minutes, it takes a certain amount of time for the gradient to become large enough for the scrubber to adequately remove hydrocarbons from the sample air.

10.3.6. SO₂ Scrubber

In order to ensure that no ambient SO₂ interferes with the analyzer’s H₂S measurement the sample gas stream is passed through a chemical scrubber that removes SO₂ from the sample stream before it is passed through the catalytic converter (see Figure 10-7).

The SO₂ scrubber is a Teflon encased, stand-alone unit containing a room-temperature catalyst tube mounted in the front right side of the analyzer case (see Figure 3.8) near the instrument’s on/off switch.

The SO₂ scrubber material is consumed as it removes SO₂. If the expected concentrations of SO₂ are very high, the lifetime of the scrubber will be short. The expected life of the scrubber is approximately 1000 ppm-hours. See Section 9.3.3 for information on when and how to replace the SO₂ scrubber material.

10.3.7. Pneumatic Sensors

The M6200E uses two pneumatic sensors to verify gas streams. These sensors are located on a printed circuit assembly, called the pneumatic pressure/flow sensor board.

10.3.7.1. Sample Pressure Sensor

An absolute pressure transducer plumbed to the input of the analyzer’s sample chamber is used to measure the pressure of the sample gas before it enters the chamber. This upstream used to validate the critical flow condition (2:1 pressure ratio) through the instrument’s critical flow orifice (Section 10.3.3). Also, if the temperature/pressure compensation (TPC) feature is turned on
(Section 10.7.3), the output of this sensor is also used to supply pressure data for that calculation.

The actual pressure measurement is viewable through the analyzer’s front panel display as the test function **PRESS**.

10.3.7.2. Sample Flow Sensor

A thermal-mass flow sensor is used to measure the sample flow through the analyzer. This sensor is also mounted on the pneumatic pressure/flow sensor board upstream of the sample chamber. The flow rate is monitored by the CRT which issues a warning message (**SAMP FLOW WARN**) if the flow rate is too high or too low.

The flow rate of the sample gas is viewable via the front panel as the **SAMP FL** test function.
10.4. Electronic Operation

Figure 10-10: M6200E Electronic Block Diagram
The core of the analyzer is a microcomputer that controls various internal processes, interprets data, makes calculations, and reports results using specialized firmware developed by Teledyne Analytical Instruments. It communicates with the user as well as receives data from and issues commands to a variety of peripheral devices through a separate printed circuit assembly to which the CPU is mounted: the motherboard.

The motherboard is directly mounted to the rear panel and collects data, performs signal conditioning duties and routes incoming and outgoing signals between the CPU and the analyzer’s other major components.

Concentration data of the M6200E are generated by the photo multiplier tube (PMT), which produces an analog current signal corresponding to the brightness of the fluorescence reaction in the sample chamber. This current signal is amplified to a DC voltage signal (front panel test parameter \textit{PMT}) by a PMT preamplifier printed circuit assembly (located on top of the sensor housing). \textit{PMT} is converted to digital data by a bi-polar, analog-to-digital converter, located on the motherboard.

In addition to the PMT signal, a variety of sensors report the physical and operational status of the analyzer’s major components, again through the signal processing capabilities of the motherboard. These status reports are used as data for the \(\text{H}_2\text{S} \) concentration calculation (e.g. pressure and temperature reading used by the temperature/pressure compensation feature) and as trigger events for certain warning messages and control commands issued by the CPU. They are stored in the CPU’s memory and, in most cases, can be viewed through the front panel display.

The CPU communicates with the user and the outside world in a variety of ways:

- Through the analyzer’s keyboard and vacuum fluorescent display over a clocked, digital, serial I/O bus using the \(\text{I}^2\text{C} \) protocol (pronounced “I-squared-C”);
- RS 232 & RS485 serial I/O channels;
- Various analog voltage and current outputs and
- Several digital I/O channels.

Finally, the CPU issues commands (also over the \(\text{I}^2\text{C} \) bus) to a series of relays and switches located on a separate printed circuit assembly, the relay board (located in the rear of the chassis on its own mounting bracket) to control the function of key electromechanical devices such as heaters that keep the sample chamber at a steady temperature and, when installed, the zero/span and internal zero/span valve sets and heaters.

\section*{10.4.1. CPU}

The CPU is a low power (5 VDC, 0.8A max), high performance, 386-based microcomputer running the DR-DOS operating system. Its operation and assembly conform to the PC-104 specification, version 2.3 for embedded PC and PC/AT applications. It has 2 MB of DRAM memory on board and operates at 40 MHz clock rate over an internal, 32-bit data and address bus. Chip to chip data handling is performed by two 4-channel direct memory access (DMA) devices over data busses of either 8-bit or 16-bit bandwidth. The CPU supports both RS-232 and RS-485 serial protocols. Figure 10-11 shows the CPU.
The CPU includes two types of non-volatile data storage, one disk-on-chip and one or two flash chips.

10.4.1.1. Disk On Chip

While technically an EEPROM, the disk-on-chip (DOC) appears to the CPU as, behaves as, and performs the same function in the system as an 8 mb disk drive. It is used to store the computer's operating system, the Teledyne Analytical Instruments firmware, and most of the operational data generated by the analyzer’s internal data acquisition system (iDAS - Sections 10.7.4 and 6.11).

10.4.1.2. Flash Chip

This non-volatile memory includes 64 kb of space. The M6200E CPU board can accommodate up to two EEPROM flash chips. The M6200E standard configuration is one chip with 64 kb of storage capacity, which is used to store a backup of the analyzer configuration as created during final checkout at the factory. Separating this data onto a less frequently accessed chip significantly decreases the chance of this key data getting corrupted.
In the unlikely event that the flash chip should fail, the analyzer will continue to operate with just the DOC. However, all configuration information will be lost, requiring the unit to be recalibrated.

10.4.2. Sensor Module & Sample chamber

Electronically, the M6200E sensor module is a group of subassemblies with different tasks: to detect the intensity of the light from the fluorescence reaction between H₂S and O₃ in the sample chamber, to produce a current signal proportional to the intensity of the fluorescence and to control the temperature of the PMT cooler to ensure the accuracy and stability of the measurements.

![Diagram of M6200E Sample Chamber](image)

Figure 10-12: M6200E Sample Chamber

10.4.3. Sample Chamber Heating Circuit

In order to reduce temperature effects, the sample chamber is maintained at a constant 50°C, just above the high end of the instrument’s operation temperature range. Two AC heaters, one embedded into the top of the sample chamber, the other embedded directly below the reference detector’s light trap, provide the heat source. These heaters operate off of the instrument’s main AC power and are controlled by the CPU through a power relay on the relay board. A thermistor, also embedded in the bottom of the sample chamber, reports the cell’s temperature to the CPU through the thermistor interface circuitry of the motherboard.
10.4.4. Photo Multiplier Tube (PMT)

The M6200E uses a photo multiplier tube (PMT) to detect the amount of fluorescence created by the H₂S and O₃ reaction in the sample chamber.

A typical PMT is a vacuum tube containing a variety of specially designed electrodes. Photons from the reaction are filtered by an optical high-pass filter, enter the PMT and strike a negatively charged photo cathode causing it to emit electrons. A high voltage potential across these focusing electrodes directs the electrons toward an array of high voltage dynodes. The dynodes in this electron multiplier array are designed so that each stage multiplies the number of emitted electrons by emitting multiple, new electrons. The greatly increased number of electrons emitted from one end of electron multiplier are collected by a positively charged anode at the other end, which creates a useable current signal. This current signal is amplified by the preamplifier board and then reported to the motherboard.
A significant performance characteristic of the PMT is the voltage potential across the electron multiplier. The higher the voltage, the greater is the number of electrons emitted from each dynode of the electron multiplier, making the PMT more sensitive and responsive to small variations in light intensity but also more noisy (dark noise). The gain voltage of the PMT used in the M6200E is usually set between 450 V and 800 V. This parameter is viewable through the front panel as test function HVPS (Section 6.2.1). For information on when and how to set this voltage, see Section 11.6.3.

The PMT is housed inside the PMT module assembly (Figure 10-13). This assembly also includes the high voltage power supply required to drive the PMT, an LED used by the instrument’s optical test function, a thermistor that measures the temperature of the PMT and various components of the PMT cooling system including the thermo-electric cooler (TEC).

10.4.5. PMT Cooling System.

The performance of the analyzer’s PMT is significantly affected by temperature. Variations in PMT temperature are directly reflected in the signal output of the PMT. The signal to noise ratio of the PMT output is radically influenced by temperature as well. The warmer the PMT is, the noisier its signal becomes until the noise renders the concentration signal useless. To alleviate this problem a special cooling system exists that maintains the PMT temperature at a stable, low level.

10.4.5.1. Thermoelectric Cooler (TEC)

The core of the M6200E PMT cooling system is a solid state heat pump called a thermoelectric cooler (TEC). Thermoelectric coolers transfer heat from one side of a special set of semiconductor junctions to the other when a DC current is applied. The heat is pumped at a rate proportional to the amount of current applied. In the Model 6200E, the TEC is physically attached to a cold block that absorbs heat directly from the PMT and a heat sink that is cooled by moving air (see Figure 10-15). A Thermocouple embedded into the cold block generates an analog voltage corresponding to the current temperature of the PMT. The PMT Preamp PCA conditions and amplifies this signal then passes it on to the TEC Control PCA.
10.4.5.2. TEC Control Board

The TEC control printed circuit assembly is located on the sensor housing assembly, under the slanted shroud, next to the cooling fins and directly above the cooling fan. Using the amplified PMT temperature signal from the PMT preamplifier board (Section 10.4.6), it sets the drive voltage for the thermoelectric cooler. The warmer the PMT gets, the more current is passed through the TEC causing it to pump more heat to the heat sink.

TEC Control Power Status LED

A red LED located on the top edge of this assembly glows constantly to indicate that the control circuit is receiving power.

TEC Control Test Points

Four test points are also located at the top of this assembly they are numbered left to right start with the point immediately to the right of the power status LED. See Section 11.5.13 for more information.

10.4.6. PMT Preamplifier

The PMT preamplifier board amplifies the PMT signal into a useable analog voltage \(\text{PMT} \) that can be processed by the motherboard into a digital signal to be used by the CPU to calculate the \(\text{H}_2\text{S} \) concentration of the gas in the sample chamber.

The output signal of the PMT is controlled by two different adjustments. First, the voltage across the electron multiplier array of the PMT is adjusted with a set of two hexadecimal switches. Adjusting this voltage directly affects the HVPS voltage and, hence, the signal from the PMT. Secondly, the gain of the amplified signal can further be adjusted through a potentiometer. These
adjustments should only be performed when encountering problems with the software calibration that cannot be rectified otherwise. See Section 11.6.3 for this hardware calibration.

The PMT temperature control loop maintains the PMT temperature around 7° C and can be viewed as test function PMT TEMP on the front panel.

The electrical test (ETEST) circuit generates a constant, electronic signal intended to simulate the output of the PMT (after conversion from current to voltage). By bypassing the detector’s actual signal, it is possible to test most of the signal handling and conditioning circuitry on the PMT preamplifier board. See section 6.9.6 for instructions on performing this test.

The optical test (OTEST) feature causes an LED inside the PMT cold block to create a light signal that can be measured with the PMT. If zero air is supplied to the analyzer, the entire measurement capability of the sensor module can be tested including the PMT and the current to voltage conversion circuit on the PMT preamplifier board. See section 6.9.5 for instructions on performing this test.
10.4.7. Pneumatic Sensor Board

The flow and pressure sensors of the M6200E are located on a printed circuit assembly just behind the PMT sensor. Refer to Section 11.5.15 on how to test this assembly. The signals of this board are supplied to the motherboard for further signal processing. All sensors are linearized in the firmware and can be span calibrated from the front panel. See section 6.9.8 for instructions on performing this test.

10.4.8. Relay Board

The relay board is the central switching unit of the analyzer. It contains power relays, status LEDs for all heated zones and valves as well as valve drivers, thermocouple amplifiers, power distribution connectors and the two switching power supplies of the analyzer. The relay board communicates with the motherboard over the I²C bus and is the main board for trouble-shooting power problems of any kind.

10.4.8.1. Heater Control

The M6200E uses a variety of heaters for its individual components. All heaters are AC powered and can be configured for 100/120 VAC or 220/230VAC at 50-60 Hz.

The two sample chamber heaters are electronically connected in parallel for analyzers at 100/120 VAC line power and in series for units configured for 220/230 VAC. One configuration plug on the relay board determines the power configuration for the entire analyzer.

On units with IZS options installed, an additional set of AC heaters is attached to the IZS permeation tube. Some special M6200E models may have other, non-standard heating zones installed, such as a dilution manifold.

In order to operate efficiently, the $\text{H}_2\text{S} \rightarrow \text{SO}_2$ converter must be heated to 315$^\circ$C. An AC band heater wrapped around the converter cartridge contains two heater coils that are also configured in parallel or in series depending on the Type of AC power being supplied. A thermocouple imbedded in the heater measures the temperature and feeds a small voltage to the relay board’s thermocouple amplifier, which, in turn, transmits the linearized analog voltage to the motherboard. This information is sent to the CPU via the instruments I²C buss. The CPU returns activate/deactivate signals to the appropriate relay also via the I²C buss.

On units with IZS options installed, an additional set of AC heaters is attached to the IZS oven. Some special M6200E models may have other, non-standard heating zones installed, such as a bypass manifold.

10.4.8.2. Valve Control

The relay board also hosts two valve driver chips, each of which can drive up four valves. In its basic configuration the Model 6200E requires no special valves to operate. However, on units with either the zero/span valve or the IZS option installed the valves are. Manifold valves may also be present in certain special versions of the analyzer.
10.4.9. Status LEDs & Watch Dog Circuitry

Thirteen LEDs are located on the analyzer’s relay board to indicate the status of the analyzer’s heating zones and valves as well as a general operating watchdog indicator. Table 10-2 shows the states of these LEDs and their respective functionality.

Table 10-2: Relay Board Status LED’s

<table>
<thead>
<tr>
<th>LED</th>
<th>COLOR</th>
<th>FUNCTION</th>
<th>STATUS WHEN LIT</th>
<th>STATUS WHEN UNLIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>RED</td>
<td>Watchdog circuit</td>
<td>Cycles On/Off every 3 seconds under control of the CPU.</td>
<td></td>
</tr>
<tr>
<td>D2</td>
<td>YELLOW</td>
<td>Sample chamber heater</td>
<td>HEATING</td>
<td>NOT HEATING</td>
</tr>
<tr>
<td>D3</td>
<td>YELLOW</td>
<td>H₂S → SO₂ converter heater</td>
<td>HEATING</td>
<td>NOT HEATING</td>
</tr>
<tr>
<td>D4</td>
<td>YELLOW</td>
<td>Unused</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>D5</td>
<td>YELLOW</td>
<td>IZS heater Perm. Tube (option)</td>
<td>HEATING</td>
<td>NOT HEATING</td>
</tr>
<tr>
<td>D6</td>
<td>YELLOW</td>
<td>Unused</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>D7</td>
<td>GREEN</td>
<td>Sample/Cal Valve (option)</td>
<td>Valve open to zero/span valve.</td>
<td>Valve open to sample inlet</td>
</tr>
<tr>
<td>D8</td>
<td>GREEN</td>
<td>Zero/Span Valve (option)</td>
<td>Valve open to zero gas inlet</td>
<td>Valve open to span gas inlet</td>
</tr>
<tr>
<td>D9</td>
<td>GREEN</td>
<td>SO₂/H₂S valve</td>
<td>Gas stream bypasses H₂S → SO₂ converter. Analyzer measuring SO₂</td>
<td>Valve open to H₂S → SO₂ converter. Analyzer measuring H₂S.</td>
</tr>
<tr>
<td>D10</td>
<td>GREEN</td>
<td>Unused</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>D11</td>
<td>GREEN</td>
<td>UV Lamp Shutter</td>
<td>Shutter open</td>
<td>Shutter closed</td>
</tr>
<tr>
<td>D12-14</td>
<td>GREEN</td>
<td>Unused</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>
As a Safety measure, special circuitry on the Relay Board watches the status of LED D1. Should this LED ever stay ON or OFF for 30 seconds, indicating that the CPU or I²C bus has stopped functioning, the Watchdog Circuit will automatically shut off all valves as well as turn off the UV Source(s) and all heaters. The Sample Pump will still be running.

10.4.10. Motherboard

This printed circuit assembly provides a multitude of functions including A/D conversion, digital input/output, PC-104 to I²C translation, temperature sensor signal processing and is a pass through for the RS-232 and RS-485 signals.

10.4.10.1. A to D Conversion

Analog signals, such as the voltages received from the analyzer’s various sensors, are converted into digital signals that the CPU can understand and manipulate by the analog to digital converter (A/D). Under the control of the CPU, this functional block selects a particular signal input and then converts the selected voltage into a digital word.

The A/D consists of a voltage-to-frequency (V-F) converter, a programmable logic device (PLD), three multiplexers, several amplifiers and some other associated devices. The V-F converter produces a frequency proportional to its input voltage. The PLD counts the output of the V-F during a specified time period, and sends the result of that count, in the form of a binary number, to the CPU.

The A/D can be configured for several different input modes and ranges but in the is used in unipolar mode with a +5V full scale. The converter includes a 1% over and under-range. This allows signals from -0.05V to +5.05V to be fully converted.

For A to D calibration purposes, two reference voltages are supplied to the A/D converter: Reference ground and +4.096 VDC. During calibration the device measures these two voltages and outputs their digital equivalent to the CPU. The CPU uses these values to compute the A to D converter’s offset and slope (not the same offset and slope recorded during zero/span calibration) and uses these factors for subsequent conversions. See Section 6.9.4.6 for instructions on performing this calibration.

10.4.10.2. Sensor Inputs

The key analog sensor signals are coupled to the A/D through the master multiplexer from two connectors on the motherboard. 100K terminating resistors on each of the inputs prevent cross talk from appearing on the sensor signals.

PMT DETECTOR OUTPUT: This signal, output by the PMT preamp PCA, is used in the computation of the H₂S, H₂S and H₂S concentrations displayed at the top right hand corner of the front panel display and output through the instruments analog outputs and COMM ports.

PMT HIGH VOLTAGE POWER SUPPLY LEVEL: This input is based on the drive voltage output by the PMT pram board to the PMT’s high voltage power supply (HVPS). It is digitized and sent to the CPU where it is used to calculate the voltage setting of the HVPS and stored in the instruments memory as the test function HVPS. HVPS is viewable as a test function (Section 6.2.1) through the analyzer’s front panel.
PMT TEMPERATURE: This signal is the output of the thermistor attached to the PMT cold block amplified by the PMT temperature feedback circuit on the PMT preamp board. It is digitized and sent to the CPU where it is used to calculate the current temperature of the PMT.

This measurement is stored in the analyzer’s memory as the test function PMT TEMP and is viewable as a test function (Section 6.2.1) through the analyzer’s front panel.

SAMPLE GAS PRESSURE SENSOR: This sensor measures the gas pressure at the exit of the sample chamber.

SAMPLE FLOW SENSOR: This sensor measures the flow rate of the sample gas as it exits the sample chamber.

10.4.10.3. Thermistor Interface

This circuit provides excitation, termination and signal selection for several negative-coefficient, thermistor temperature sensors located inside the analyzer. They are:

SAMPLE CHAMBER TEMPERATURE SENSOR: The source of this signal is a thermistor embedded in the sample chamber block. It measures the temperature of the sample gas in the chamber. This data are used by the CPU to control the sample chamber heating circuit and as part of the H2S calculations when the instrument’s Temperature/Pressure Compensation feature is enabled.

This measurement is stored in the analyzer memory as a parameter (RCEL TEMP) and is viewable as a test function under the same name (Section 6.2.1) through the analyzer’s front panel.

IZS OPTION PERMEATION TUBE TEMPERATURE SENSOR: This thermistor, attached to the permeation tube in the IZS option, reports the current temperature of that tube to the CPU as part of the control loop that keeps the tube at a constant temperature.

BOX TEMPERATURE SENSOR: A thermistor is attached to the motherboard. It measures the analyzer’s inside temperature. This information is stored by the CPU and can be viewed by the user for troubleshooting purposes through the front panel display. This measurement is stored in the analyzer memory as the test function BOX TEMP and is viewable as a test function (Section 6.2.1) through the analyzer’s front panel.

10.4.11. Analog Outputs

The analyzer comes equipped with four Analog Outputs: A1, A2, A4 and a fourth that is a spare.

A1 and A2 Outputs: The first two, A1 and A2 are normally set up to operate in parallel so that the same data can be sent to two different recording devices. While the names imply that one should be used for sending data to a chart recorder and the other for interfacing with a datalogger, either can be used for both applications.

Both of these channels output a signal that is proportional to the O3 concentration of the sample gas. The A1 and A2 outputs can be slaved together or set up to operate independently. A variety of scaling factors are available, See Section 6.7 for information on setting the reporting range type and scaling factors for these output channels.

Test Output: The third analog output, labeled A4 is special. It can be set by the user (see Section 6.9.10) to carry the current signal level of any one of the parameters accessible through the TEST menu of the unit’s software.
In its standard configuration, the analyzer comes with all three of these channels set up to output a DC voltage. However, 4-20mA current loop drivers can be purchased for the first two of these outputs, A1 and A2.

Output Loop-back: All three of the functioning analog outputs are connected back to the A/D converter through a Loop-back circuit. This permits the voltage outputs to be calibrated by the CPU without need for any additional tools or fixtures.

10.4.12. External Digital I/O

This External Digital I/O performs two functions.

STATUS OUTPUTS: Logic-Level voltages are output through an optically isolated 8-pin connector located on the rear panel of the analyzer. These outputs convey good/bad and on/off information about certain analyzer conditions. They can be used to interface with certain types of programmable devices (see Section 6.12.1.1).

CONTROL INPUTS: By applying +5VDC power supplied from an external source such as a PLC or Datalogger (see Section 6.12.1.2), Zero and Span calibrations can be initiated by contact closures on the rear panel.

10.4.13. I^2C Data Bus

The I^2C data bus is used to communicate data and commands between the CPU, the keyboard/display interface and the various switches and relays on the relay board. I^2C is a two-wire, clocked, bi-directional, digital serial I/O bus that is used widely in commercial and consumer electronic systems. A transceiver on the motherboard converts data and control signals from the PC-104 bus to I^2C. The data is then fed to the keyboard/display interface (see Section 10.6.1.4) and finally onto the relay board.

10.4.14. Power up Circuit

This circuit monitors the +5V power supply during start-up and sets the analog outputs, external digital I/O ports, and I^2C circuitry to specific values until the CPU boots and the instrument software can establish control.

10.5. Power Supply/ Circuit Breaker

The analyzer operates on 100 VAC, 115 VAC or 230 VAC power at either 50Hz or 60Hz. Individual units are set up at the factory to accept any combination of these five attributes. As illustrated in Figure 10-18 below, power enters the analyzer through a standard IEC 320 power receptacle located on the rear panel of the instrument. From there it is routed through the ON/OFF switch located in the lower right corner of the front panel.

AC line power is converted stepped down and converted to DC power by two DC power supplies. One supplies +12 VDC, for various valves and valve options, while a second supply provides +5 VDC and ±15 VDC for logic and analog circuitry as well as the TEC cooler. All AC and DC Voltages are distributed through the Relay Board.
A 6.75 ampere circuit breaker is built into the ON/OFF switch. In case of a wiring fault or incorrect supply power, the circuit breaker will automatically turn off the analyzer.

CAUTION

Should the power circuit breaker trip correct the condition causing this situation before turning the analyzer back on.

10.6. Communications Interface

The analyzer has several ways to communicate with the outside world, see Figure 10-19. Users can input data and receive information directly through the front panel keypad and display. Direct, two-way communication with the CPU is also available by way of the analyzer's RS232 & RS485 I/O ports (see Section 6.10 and 6.12). Alternatively, an Ethernet communication option can be substituted for one of the Comm ports.

The analyzer can also send status information and data via the eight digital status output lines (see Section 6.12.1) and the three analog outputs (see Section 6.7) located on the rear panel as well as receive commands by way of the six digital control inputs also located on the rear pane (see Section 6.12.2).
10.6.1. Front Panel Interface

Figure 10-20: M6200E Front Panel Layout
The most commonly used method for communicating with the M6200E UV Fluorescence H₂S Analyzer is via the instrument’s front panel which includes a set of three status LEDs, a vacuum florescent display and a keyboard with 8 context-sensitive keys.

10.6.1.1. Analyzer Status LED’s

Three LEDs are used to inform the user of the instruments basic operating status.

Table 10-3: Front Panel Status LED’s

<table>
<thead>
<tr>
<th>NAME</th>
<th>COLOR</th>
<th>STATE</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAMPLE</td>
<td>Green</td>
<td>Off</td>
<td>Unit is not operating in sample mode, IDAS is disabled.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On</td>
<td>Sample Mode active; Front Panel Display being updated, IDAS data being stored. Unit is operating in sample mode, front panel display being updated, IDAS hold-off mode is ON, IDAS disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blinking</td>
<td></td>
</tr>
<tr>
<td>CAL</td>
<td>Yellow</td>
<td>Off</td>
<td>Auto Cal disabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>On</td>
<td>Auto Cal enabled</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blinking</td>
<td>Unit is in calibration mode</td>
</tr>
<tr>
<td>FAULT</td>
<td>Red</td>
<td>Off</td>
<td>H₂S warnings exist</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Blinking</td>
<td>Warnings exist</td>
</tr>
</tbody>
</table>

10.6.1.2. Keyboard

A row of eight keys just below the vacuum florescent display (see Figure 10-20) is the main method by which the user interacts with the analyzer. As the software is operated, labels appear on the bottom row of the display directly above each active key, defining the function of that key as it is relevant for the operation being performed. Pressing a key causes the associated instruction to be performed by the analyzer.

Note that the keys do not auto-repeat. In circumstances where the same key must be activated for two consecutive operations, it must be released and re-pressed.

10.6.1.3. Display

The main display of the analyzer is a vacuum fluorescent display with two lines of 40 text characters each. Information is organized in the following manner (see Figure 10-20):

- **Mode Field**: Displays the name of the analyzer’s current operating mode.

- **Message Field**: Displays a variety of informational messages such as warning messages, operation data and response messages during interactive tasks.

- **Concentration Field**: Displays the actual concentration of H₂S in the sample gas currently being measured by the analyzer. Switches to indicate SO₂ concentration if/when the instrument is configured for SO₂ measurement or between H₂S and SO₂ when the instrument is in multigas measurement mode.

- **Keypad Definition Field**: Displays the definitions for the row of keys just below the display. These definitions dynamic, context sensitive and software driven.
10.6.1.4. Keyboard/Display Interface Electronics

The keyboard/display interface electronics of the M6200E Analyzer watches the status of the eight front panel keys, alerts the CPU when keys are depressed, translates data from parallel to serial and back and manages communications between the keyboard, the CPU and the front panel display. Except for the Keyboard interrupt status bit, all communication between the CPU and the keyboard/display is handled by way of the instrument's I²C buss. The CPU controls the clock signal and determines when the various devices on the bus are allowed to talk or required to listen. Data packets are labeled with addresses that identify for which device the information is intended.

Keypad Decoder

Each key on the front panel communicates with a decoder IC via a separate analog line. When a key is depressed the decoder chip notices the change of state of the associated signal; latches and holds the state of all eight lines (in effect creating an 8-bit data word); alerts the key-depress-detect circuit (a flip-flop IC); translates the 8-bit word into serial data and; sends this to the I²C interface chip.

Key-Depress-Detect Circuit

This circuit flips the state of one of the inputs to the I²C interface chip causing it to send an interrupt signal to the CPU.
I²C Interface Chip

- This IC performs several functions:
 - Using a dedicated digital status bit, it sends an interrupt signal alerting the CPU that new data from the keyboard is ready to send.
 - Upon acknowledgement by the CPU that it has received the new keyboard data, the I²C interface chip resets the key-depress-detect flip-flop.
 - In response to commands from the CPU, it turns the front panel status LEDs on and off and activates the beeper.
 - Informs the CPU when the optional maintenance and second language switches have been opened or closed (see Chapter 5 for information on these options).

Display Data Decoder

This decoder translates the serial data sent by the CPU (in TTY format) into a bitmapped image which is sent over a parallel data bus to the display.

Display Controller

This circuit manages the interactions between the display data decoder and the display itself. It generates a clock pulse that keeps the two devices synchronized. It can also, in response to commands from the CPU turn off and/or reset the display.

Additionally, for analyzers with the optional maintenance switch is installed (See Chapter 5), the display controller turns on an LED located on the back of the keyboard interface PCA whenever the instrument is placed in maintenance mode.

Display Power Watchdog

The Model 6200E’s display can begin to show garbled information or lock-up if the DC voltage supplied to it falls too low, even momentarily. To alleviate this, a brown-out watchdog circuit monitors the level of the power supply and in the event that the voltage level falls below a certain level resets the display by turning it off, then back on.

I²C Link To The Relay PCA

While the CPU's I²C communication with the relay board is also routed through the keyboard/display interface, information passed to and from the relay board via this channel is not recognized by, acted upon or affected by the circuitry of the keyboard/display interface.

10.7. Software Operation

The M6200E H₂S analyzer is at its heart a high performance, 386-based microcomputer running MS-DOS. Inside the DOS shell, special software developed by Teledyne Analytical Instruments interprets user commands via the various interfaces, performs procedures and tasks, stores data in the CPU's various memory devices and calculates the concentration of the sample gas.
10.7.1. Adaptive Filter

The M6200E H₂S analyzer software processes sample gas measurement and reference data through a built-in adaptive filter built into the software. Unlike other analyzers that average the sensor output signal over a fixed time period, the M6200E calculates averages over a set number of samples. During operation, the software automatically switches between two filters of different lengths based on the conditions at hand.

During conditions of constant or nearly constant concentration the software computes an average of the last 240 samples. This provides the calculation portion of the software with smooth stable readings. If a rapid change in concentration is detected, the adaptive filter switches modes and only averages the last 48 samples. This allows the analyzer to respond to the rapidly changing concentration more quickly. Once triggered, the short filter remains engaged for a fixed time period to prevent chattering.

Two conditions must be simultaneously met to switch to the short filter. First the instantaneous concentration must exceed the average in the long filter by a fixed amount. Second, the instantaneous concentration must exceed the average in the long filter by a portion, or percentage, of the average in the long filter.

If necessary, the filter lengths of these two modes may be changed to any value between 1 and 1000 samples. Long sample lengths provide better signal to noise rejection, but poor response times. Conversely shorter filter lengths result in poor signal to noise rejection, but quicker response times.

10.7.2. Calibration - Slope and Offset

Calibration of the analyzer is performed exclusively in software. During instrument calibration (Chapters 7 and 8) the user enters expected values for zero and span through the front panel keypad and commands the instrument to make readings of sample gases with known concentrations of H₂S. The readings taken are adjusted, linearized, and compared to the expected values as input. With this information the software computes values for instrument both slope and offset and stores these values in memory for use in calculating the H₂S concentration of the sample gas.
Instrument slope and offset values recorded during the last calibration can be viewed by pressing the following keystroke sequence

![Keystroke sequence diagram]

NOTE

Separate slope and offset values are calculated and recorded for H2S and SO2 gas measurements. Here they are shown as they appear when analyzer is in H2S mode. In SO2 mode appear as SO2 OFFS & SO2 SLOPE. In multigas mode, both versions appear.

10.7.3. Temperature and Pressure Compensation (TPC) Feature

As explained previously, changes in temperature can significantly affect the amount of fluoresced UV light generated in the instrument's sample chamber. To negate this effect, the Model 6200E maintains the sample gas at a stable, raised temperature.

Pressure changes can also have a noticeable, if more subtle, effect on the H2S concentration calculation. To account for this, the Model 6200E software includes a feature which allows the instrument to include a compensation factor in the H2S calculations that is based on changes in ambient pressure.

When the TPC feature is enabled, the analyzer's H2S concentration is divided by a factor called **PRESSCO** which is based on the ratio between the ambient pressure of the sample gas and standard atmospheric pressure (Equation 10-5). As ambient pressure increases, the compensated H2S concentration is decreased.

\[
PRESSCO = \frac{SAMPLE_PRESSURE\ ("HG\ - \ A") \times SAMP_PRESS_SLOPE}{29.92\ ("HG\ - \ A")}
\]

Equation 10-5

SAMPLE-PRESSURE: The ambient pressure of the sample gas as measured by the instrument's sample pressure sensor (see Figure 10-7) in "Hg-A.

SAMP_PRESS_SLOPE: Sample pressure slope correction factor. The default setting for Section 6.8 describes the method for enabling/disabling the TPC feature.
10.7.4. Internal Data Acquisition System (iDAS)

The iDAS is designed to implement predictive diagnostics that stores trending data for users to anticipate when an instrument will require service. Large amounts of data can be stored in non-volatile memory and retrieved in plain text format for further processing with common data analysis programs. The iDAS has a consistent user interface in all Teledyne Analytical Instruments. New data parameters and triggering events can be added to the instrument as needed.

Depending on the sampling frequency and the number of data parameters the iDAS can store several months of data, which are retained even when the instrument is powered off or a new firmware is installed. The iDAS permits users to access the data through the instrument’s front panel or the remote interface. The latter can automatically download stored data for further processing. For information on using the iDAS, refer to Sections 6.11.

User Notes:
11. TROUBLESHOOTING & REPAIR

This section contains a variety of methods for identifying and solving performance problems with the analyzer.

CAUTION
The operations outlined in this chapter must be performed by qualified maintenance personnel only.

CAUTION
Risk of electrical shock. Some operations need to be carried out with the analyzer open and running. Exercise caution to avoid electrical shocks and electrostatic or mechanical damage to the analyzer. Do not drop tools into the analyzer or leave those after your procedures. Do not shorten or touch electric connections with metallic tools while operating inside the analyzer. Use common sense when operating inside a running analyzer.

NOTE
The front panel of the analyzer is hinged at the bottom and may be opened to gain access to various components mounted on the panel itself or located near the front of the instrument (such as the particulate filter).

A locking screw located at the top center of the panel and two fasteners located in the upper right and left corners of the panel lock it shut (Figure 3-9).

11.1. General Troubleshooting

The analyzer has been designed so that problems can be rapidly detected, evaluated and repaired. During operation, the analyzer continuously performs diagnostic tests and provides the ability to evaluate its key operating parameters without disturbing monitoring operations.

A systematic approach to troubleshooting will generally consist of the following five steps:

- Note any warning messages and take corrective action as necessary.
- Examine the values of all TEST functions and compare them to factory values. Note any major deviations from the factory values and take corrective action.
- Use the internal electronic status LED’s to determine whether the electronic communication channels are operating properly. Verify that the DC power supplies are operating properly by checking the voltage test points on the relay board. Note that the analyzer’s DC power wiring is color-coded and these colors match the color of the corresponding test points on the relay board.
- Suspect a leak first! Customer service data indicate that half of all problems are eventually traced to leaks in the pneumatic system of the analyzer (including the external pump), the
source of zero air or span gases or the sample gas delivery system. Check for gas flow problems such as clogged or blocked internal/external gas lines, damaged seals, punctured gas lines, a damaged pump diaphragm, etc.

- Follow the procedures defined in Section 11.5 for confirming that the analyzer's basic components are working (power supplies, CPU, relay board, keyboard, PMT cooler, etc.). See Figure 3-8 for general layout of components and sub-assemblies in the analyzer. See the wiring interconnect drawing and interconnect list, see Appendix D.

11.1.1. Fault Diagnosis with Warning Messages

The most common and/or serious instrument failures will result in a warning message displayed on the front panel. Table 11-1 contains a list of warning messages, along with a list of possible faults that might be responsible for the warning condition.

It should be noted that if more than two or three warning messages occur at the same time, it is often an indication that some fundamental analyzer sub-system (power supply, relay board, motherboard) has failed rather than an indication of the specific failures referenced by the warnings. In this case, a combined-error analysis needs to be performed.

The analyzer will alert the user that a warning is active by displaying the keypad labels **MSG** and **CLR** on the front panel and a text message in the top center line of the display as shown in this example:

![Sample AZero Warning NOX = 123.4](image)

The analyzer will also issue a message to the serial port and cause the red FAULT LED on the front panel to blink.

To view or clear a warning message press:

![Figure 11-1: Viewing and Clearing warning messages](image)
<table>
<thead>
<tr>
<th>WARNING MESSAGE</th>
<th>FAULT CONDITION</th>
<th>POSSIBLE CAUSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANALOG CAL WARNING</td>
<td>The instruments A/D circuitry or one of its analog outputs is not calibrated.</td>
<td>A parameter for one of the analog outputs has been changed and the calibration routine was not re-run. A/D circuitry failure on motherboard. Other motherboard electrical failure.</td>
</tr>
<tr>
<td>BOX TEMP WARNING</td>
<td>Box Temp is < 5°C or > 48°C.</td>
<td>NOTE: Box temperature typically runs ~7°C warmer than ambient temperature. Poor/blocked ventilation to the analyzer. Stopped exhaust-fan. Ambient temperature outside of specified range.</td>
</tr>
<tr>
<td>CANNOT DYN SPAN</td>
<td>Dynamic Span operation failed</td>
<td>Measured concentration value is too high or low. Concentration slope value to high or too low.</td>
</tr>
<tr>
<td>CANNOT DYN ZERO</td>
<td>Dynamic Zero operation failed</td>
<td>Measured concentration value is too high. Concentration offset value to high.</td>
</tr>
<tr>
<td>CONFIG INITIALIZED</td>
<td>Configuration and Calibrations data reset to original Factory state.</td>
<td>Failed disk on chip. User erased data.</td>
</tr>
<tr>
<td>CONV TEMP WARNING</td>
<td>The temperature of the H₂S → SO² catalytic converter is outside its optimal operating range.</td>
<td>Bad converter heater. Bad converter temperature sensor. Bad relay controlling the converter heater. Entire relay board is malfunctioning. I²C bus failure.</td>
</tr>
<tr>
<td>DARK CAL WARNING</td>
<td>The Dark Cal signal is higher than 1 000 mV.</td>
<td>Light leak in reaction cell. Shutter solenoid is not functioning. Failed relay board. I²C bus failure. Loose connector/wiring. PMT preamp board bad or out of calibration.</td>
</tr>
<tr>
<td>DATA INITIALIZED</td>
<td>Data Storage in IDAS was erased.</td>
<td>Failed disk on chip. User cleared data.</td>
</tr>
<tr>
<td>FRONT PANEL WARN</td>
<td>The CPU is unable to Communicate with the Front Panel Display/Keyboard</td>
<td>Warning only appears on serial I/O com port(s). Front panel display will be frozen, blank or will not respond. Failed keyboard. I²C bus failure. Loose connector/wiring.</td>
</tr>
<tr>
<td>HVPS WARNING</td>
<td>High voltage power supply output is <400 V or >900 V.</td>
<td>High voltage power supply is bad. High voltage power supply is out of calibration. A/D converter circuitry is bad.</td>
</tr>
<tr>
<td>IZS TEMP WARNING</td>
<td>On units with IZS options installed: The permeation temperature is Sample chamber temperature is < 45°C or > 55°C.</td>
<td>Bad IZS heater. Bad IZS temperature sensor. Bad relay controlling the IZS heater. Entire relay board is malfunctioning. I²C bus malfunction. Failure of thermistor interface circuitry on motherboard.</td>
</tr>
<tr>
<td>PMT DET WARNING</td>
<td>PMT detector output is > 4995 mV.</td>
<td>Failed PMT. Malfunctioning PMR preamp board. A/D converter circuitry failure.</td>
</tr>
<tr>
<td>PMT TEMP WARNING</td>
<td>PMT temperature is Sample chamber temperature is < 2°C or > 12°C.</td>
<td>Bad PMT thermo-electric cooler. Failed PMT TEC driver circuit. Bad PMT preamp board. Failed PMT temperature sensor. Loose wiring between PMT temperature sensor and PMT Preamp board. Malfunction of analog sensor input circuitry on motherboard.</td>
</tr>
<tr>
<td>RCELL TEMP WARNING</td>
<td>Sample chamber temperature is < 45°C or > 55°C.</td>
<td>Bad reaction cell heater. Bad reaction cell temperature sensor. Bad relay controlling the reaction cell heater. Entire relay board is malfunctioning. I²C bus malfunction.</td>
</tr>
</tbody>
</table>
Table 11-1: Warning Messages - Indicated Failures (cont.)

<table>
<thead>
<tr>
<th>WARNING MESSAGE</th>
<th>FAULT CONDITION</th>
<th>POSSIBLE CAUSES</th>
</tr>
</thead>
<tbody>
<tr>
<td>REAR BOARD NOT DET</td>
<td>Mother Board not detected on power up.</td>
<td>Warning only appears on serial i/o com port(s) Front panel display will be frozen, blank or will not respond. Massive failure of mother board.</td>
</tr>
<tr>
<td>RELAY BOARD WARN</td>
<td>The CPU cannot communicate with the Relay Board.</td>
<td>I²C buss failure Failed relay board Loose connectors/wiring</td>
</tr>
<tr>
<td>SAMPLE FLOW WARN</td>
<td>Sample flow rate is < 500 cc/min or > 1000 cc/min.</td>
<td>Failed sample pump Blocked sample inlet/gas line Dirty particulate filter Leak downstream of critical flow orifice Failed flow sensor/circuitry</td>
</tr>
<tr>
<td>SAMPLE PRES WARN</td>
<td>Sample Pressure is <10 in-Hg or > 35 in-Hg¹</td>
<td>If sample pressure is < 10 in-hg: o Blocked particulate filter o Blocked sample inlet/gas line o Failed pressure sensor/circuitry If sample pressure is > 35 in-hg: o Blocked vent line on pressurized sample/zero/span gas supply o Bad pressure sensor/circuitry</td>
</tr>
<tr>
<td>SYSTEM RESET</td>
<td>The computer has rebooted.</td>
<td>This message occurs at power on. If it is confirmed that power has not been interrupted: Failed +5 VDC power Fatal error caused software to restart Loose connector/wiring</td>
</tr>
<tr>
<td>UV LAMP WARNING</td>
<td>The UV lamp intensity is < 600mV or > 4995 mV</td>
<td>UV lamp is bad Reference detector is bad Mother board analog sensor input circuitry has failed Fogged or damaged lenses/filters in UV light path A/D converter circuitry failure</td>
</tr>
</tbody>
</table>

¹ Normally 29.92 in-Hg at sea level decreasing at 1 in-Hg per 1000 ft of altitude (with no flow – pump disconnected).

11.1.2. Fault Diagnosis with Test Functions

Besides being useful as predictive diagnostic tools, the TEST functions, viewable from the front panel, can be used to isolate and identify many operational problems when combined with a thorough understanding of the analyzer’s theory of operation (Section 10). We recommend use of the APICOM remote control program to download, graph and archive TEST data for analysis, and long-term monitoring of diagnostic data.

The acceptable ranges for these test functions are listed in Table A-3 in Appendix A-3. The actual values for these test functions on checkout at the factory were also listed in the Final Test and Validation Data Sheet, which was shipped with the instrument. Values outside the acceptable ranges indicate a failure of one or more of the analyzer’s subsystems. Functions with values that are within the acceptable range but have significantly changed from the measurements recorded on the factory data sheet may also indicate a failure or a maintenance item. A problem report worksheet has been provided in Appendix C to assist in recording the value of these test functions. The following table (Table 11-2) contains some of the more common causes for these values to be out of range.
<table>
<thead>
<tr>
<th>TEST FUNCTION</th>
<th>INDICATED FAILURE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H2S STB1</td>
<td>Unstable concentrations; leaks</td>
</tr>
<tr>
<td>SAMPLE FL</td>
<td>Leaks; clogged critical flow orifice</td>
</tr>
<tr>
<td>PMT</td>
<td>Calibration error; HVPS problem; PMT problem; No flow (leaks)</td>
</tr>
<tr>
<td>NORM PMT</td>
<td>Calibration error; HVPS problem; PMT problem</td>
</tr>
<tr>
<td>AZERO</td>
<td>Leaks; malfunctioning AutoZero valve</td>
</tr>
<tr>
<td>HVPS</td>
<td>HVPS broken; preamp board circuit problems</td>
</tr>
<tr>
<td>RCELL TEMP</td>
<td>Malfunctioning heater; relay board communication (I²C bus); relay burnt out</td>
</tr>
<tr>
<td>BOX TEMP</td>
<td>Environment out of temperature operating range; broken thermistor; runaway heater</td>
</tr>
<tr>
<td>PMT TEMP</td>
<td>TEC cooling circuit broken; High chassis temperature; 12V power supply</td>
</tr>
<tr>
<td>I2S TEMP (OPTION)</td>
<td>Malfunctioning heater; relay board communication (I²C bus); relay burnt out</td>
</tr>
<tr>
<td>CONV TEMP</td>
<td>Malfunctioning heater or temperature sensor; relay board communication (I²C bus); relay burnt out</td>
</tr>
<tr>
<td>PRESS (RX CELL PRESSURE)</td>
<td>Leak; malfunctioning valve; malfunctioning pump; clogged flow orifices; sample inlet overpressure;</td>
</tr>
<tr>
<td>H2S SLOPE1</td>
<td>Calibration error; span gas concentration incorrect; leaks; low lamp output</td>
</tr>
<tr>
<td>H2S OFFS1</td>
<td>Incorrect span gas concentration/contaminated zero air/leak; low-level calibration off</td>
</tr>
<tr>
<td>TIME OF DAY</td>
<td>Internal clock drifting; move across time zones; daylight savings time?</td>
</tr>
</tbody>
</table>

1 Shown as they appear when analyzer is in H2S mode. In SO2 mode appear as SO2 STB, SO2 OFFS & SO2 SLOPE. In multigas mode, both versions appear.

11.1.3. Using the Diagnostic Signal I/O Function

The signal I/O parameters found under the diagnostics (DIAG) menu combined with a thorough understanding of the instrument’s theory of operation (Section 10) are useful for troubleshooting in three ways:

- The technician can view the raw, unprocessed signal level of the analyzer’s critical inputs and outputs.
- All of the components and functions that are normally under instrument control can be manually changed.
- Analog and digital output signals can be manually controlled.

This allows the user to systematically observe the effect of these functions on the operation of the analyzer.

Figure 11-2 shows an example of how to use the signal I/O menu to view the raw voltage of an input signal or to control the state of an output voltage or control signal. The specific parameter will vary depending on the situation. Please note that the analyzer will freeze it’s concentration
output while in the diagnostic signal I/O menu. This is because manually changing I/O outputs can invalidate the instrument reading.

Figure 11-2: Example of Signal I/O Function

11.1.4. Status LEDs

Several color-coded, light-emitting diodes (LEDs) are located inside the instrument to determine if the analyzer’s CPU, I2C communications bus and relay board are functioning properly.

11.1.4.1. Motherboard Status Indicator (Watchdog)

DS5, a red LED on the upper portion of the motherboard, just to the right of the CPU board, flashes when the CPU is running the main program. After power-up, DS5 should flash on and off
about once per second. If characters are written to the front panel display but DS5 does not flash then the program files have become corrupted. Contact customer service because it may be possible to recover operation of the analyzer. If, 30 - 60 seconds after a restart, DS5 is not flashing and no characters have been written to the front panel display, the firmware may be corrupted or the CPU may be defective. If DS5 is permanently off or permanently on, the CPU board is likely locked up and the analyzer should not respond (either with locked-up or dark front panel).

![Figure 11-3: CPU Status Indicator](image)

11.1.4.2. CPU Status Indicator

The CPU board has two red LEDs. LED1 is the upper-most LED and is a +5V power indicator, so it should always be on. However, both CPU LEDs only indicate if the CPU is powered up properly and generally working. The lower LED will sometimes be stable, and sometimes will blink. It can continue to blink even if the CPU or firmware are locked up, and is not an effective indicator for debugging system problems.

11.1.4.3. Relay Board Status LEDs

The most important status LED on the relay board is the red I²C Bus watch-dog LED, labeled D1 (or W/D), which indicates the health of the I²C communications bus. This LED is located in the upper left-hand corner of the relay board when looking at the electronic components. If D1 is blinking, then the other LED’s can be used in conjunction with the DIAG menu I/O functions to test hardware functionality by switching devices on and off and watching the corresponding LED go on or off. The LED only indicates that the logic signal for an output has been activated. If the output driver (i.e. the relay or valve driver IC) is defective, then the LED will light up, but the attached peripheral device will not turn on.
Table 11-3: Relay Board Status LEDs

<table>
<thead>
<tr>
<th>LED</th>
<th>COLOR</th>
<th>FUNCTION</th>
<th>FAULT STATUS</th>
<th>INDICATED FAILURE(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>red</td>
<td>Watchdog Circuit; I2C bus operation.</td>
<td>Continuously ON or OFF</td>
<td>Failed or halted CPU; faulty motherboard, keyboard, relay board; wiring between motherboard, keyboard or relay board; +5 V power supply.</td>
</tr>
<tr>
<td>D2</td>
<td>yellow</td>
<td>Relay 0 - sample chamber heater</td>
<td>Continuously ON or OFF</td>
<td>Heater broken, thermistor broken</td>
</tr>
<tr>
<td>D3</td>
<td>yellow</td>
<td>Relay 1 – H₂S converter heater</td>
<td>Continuously ON or OFF</td>
<td>Heater broken, thermocouple broken</td>
</tr>
<tr>
<td>D4</td>
<td>yellow</td>
<td>Relay 2 - manifold heater</td>
<td>Continuously ON or OFF</td>
<td>Heater broken, thermistor broken</td>
</tr>
<tr>
<td>D5</td>
<td>yellow</td>
<td>Relay 3 - IZS heater</td>
<td>Continuously ON or OFF</td>
<td>Heater broken, thermistor broken</td>
</tr>
<tr>
<td>D6</td>
<td>yellow</td>
<td>Relay 4 - Spare</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>D7</td>
<td>green</td>
<td>Valve 0 - zero/span valve status</td>
<td>Continuously ON or OFF</td>
<td>Valve broken or stuck, valve driver chip broken</td>
</tr>
<tr>
<td>D8</td>
<td>green</td>
<td>Valve 1 - sample/cal valve status</td>
<td>Continuously ON or OFF</td>
<td>Valve broken or stuck, valve driver chip broken</td>
</tr>
<tr>
<td>D9</td>
<td>green</td>
<td>Valve 2 - auto-zero valve status</td>
<td>Continuously ON or OFF</td>
<td>Valve broken or stuck, valve driver chip broken</td>
</tr>
<tr>
<td>D10</td>
<td>green</td>
<td>Valve 3 - SO/SOx valve status</td>
<td>Continuously ON or OFF</td>
<td>Valve broken or stuck, valve driver chip broken</td>
</tr>
<tr>
<td>D11</td>
<td>green</td>
<td>Valve 4 - Spare</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>D12</td>
<td>green</td>
<td>Valve 5 - Spare</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>D13</td>
<td>green</td>
<td>Valve 6 - Spare</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>D14</td>
<td>green</td>
<td>Valve 7 - Spare</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>D15</td>
<td>green</td>
<td>Mosfet1-Unused</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>D16</td>
<td>green</td>
<td>Mosfet2-Unused</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

1 Special configurations only
2 Only active for instruments with Z/S valve or IZS options installed

11.2. Gas Flow Problems

The standard M6200E has one main flow path. With the IZS option installed, there is a second flow path flow path through the IZS oven that runs whenever the IZS is on standby to purge H₂S from the oven chamber. The IZS flow is not measured and is not available from the front panel. The full flow diagrams of the standard configuration (Figure 3-10) and with options installed (Figure 5-2 and 5-3) help in trouble-shooting flow problems. In general, flow problems can be divided into three categories:

- Flow is too high
- Flow is greater than zero, but is too low, and/or unstable
- Flow is zero (no flow)

When troubleshooting flow problems, it is essential to confirm the actual flow rate without relying on the analyzer’s flow display. The use of an independent, external flow meter to perform a flow check as described in Section 11.5.2 is essential.
11.2.1. Zero or Low Sample Flow

If the pump is operating but the unit reports a XXXX gas flow, do the following three steps:

- Check for actual sample flow
- Check pressures
- Carry out a leak check

To check the actual sample flow, disconnect the sample tube from the sample inlet on the rear panel of the instrument. Make sure that the unit is in basic SAMPLE mode. Place a finger over the inlet and see if it gets sucked in by the vacuum or, more properly, use a flow meter to measure the actual flow. If there is proper flow of around 450-500 cm³/min, contact customer service. If there is no flow or low flow, continue with the next step.

Check that the sample pressure is at or around 28 in-Hg-A (about 1 in below ambient atmospheric pressure).

11.2.2. High Flow

Flows that are significantly higher than the allowed operating range (typically ±10-11% of the nominal flow) should not occur in the M6200E unless a pressurized sample, zero or span gas is supplied to the inlet ports. Be sure to vent excess pressure and flow just before the analyzer inlet ports.

When supplying sample, zero or span gas at ambient pressure, a high flow would indicate that one or more of the critical flow orifices are physically broken (very unlikely case), allowing more than nominal flow, or were replaced with an orifice of wrong specifications. If the flows are more than 15% higher than normal, we recommend that the technician re-calibrate the flow electronically using the procedure in Section 6.9.9, followed by a thorough and regular monitoring of these flows to see if the new setting is retained properly.

11.3. Calibration Problems

11.3.1. Negative Concentrations

Negative concentration values can be caused for several things:

- A slight, negative signal is normal when the analyzer is operating under zero gas and the signal is drifting around the zero calibration point. This is caused by the analyzer’s zero noise and may cause reported concentrations to be negative for a few seconds at a time down to -20 ppb, but should alternate with similarly high, positive values.

- Mis-calibration is the most likely explanation for negative concentration values. If the zero air contained some H₂S gas (contaminated zero air or a worn-out zero air scrubber) and the analyzer was calibrated to that concentration as “zero”, the analyzer may report negative values when measuring air that contains little or no H₂S. The same problem occurs, if the analyzer was zero-calibrated using ambient air or span gas.

- If the response offset test function for H₂S (H₂S OFFS¹) are greater than 150 mV, a failed PMT or high voltage supply, or sample chamber contamination, could be the cause. Clean the sample chamber according to Section 9.3.6.
11.3.2. No Response

If the instrument shows no response (display value is near zero) even though sample gas is supplied properly and the instrument seems to perform correctly,

- Confirm response by supplying H$_2$S span gas of about 80% of the range value to the analyzer.
- Check the sample flow rate for proper value.
- Check for disconnected cables to the sensor module.
- Carry out an electrical test with the ELECTRICAL TEST procedure in the diagnostics menu, see Section 6.9.6. If this test produces a concentration reading, the analyzer’s electronic signal path is working.
- Carry out an optical test using the OPTIC TEST procedure in the diagnostics menu, see Section 6.9.5. If this test results in a concentration signal, then the PMT sensor and the electronic signal path are operating properly. If the M6200E passes both ETEST and OTEST, the instrument is capable of detecting light and processing the signal to produce a reading. Therefore, the problem must be in the pneumatics, optics or the UV lamp/lamp driver.

11.3.3. Unstable Zero and Span

Leaks in the M6200E or in the external gas supply and vacuum systems are the most common source of unstable and non-repeatable concentration readings.

- Check for leaks in the pneumatic systems as described in Section 11.5.1. Consider pneumatic components in the gas delivery system outside the M6200E such as a change in zero air source (ambient air leaking into zero air line or a worn-out zero air scrubber) or a change in the span gas concentration due to zero air or ambient air leaking into the span gas line.
- Once the instrument passes a leak check, do a flow check (Section 11.5.2) to make sure that the instrument is supplied with adequate sample gas.
- Confirm the UV lamp, sample pressure and sample temperature readings are correct and steady.
- Verify that the sample filter element is clean and does not need to be replaced.

11.3.4. Inability to Span - No SPAN Key

In general, the M6200E will not display certain keyboard choices whenever the actual value of a parameter is outside of the expected range for that parameter. If the calibration menu does not show a SPAN key when carrying out a span calibration, the actual concentration must be outside of the range of the expected span gas concentration, which can have several reasons.

- Verify that the expected concentration is set properly to the actual span gas concentration in the CONC sub-menu.
• Confirm that the H₂S span gas source is accurate. This can be done by comparing the source with another calibrated analyzer, or by having the H₂S source verified by an independent traceable photometer.

• Check for leaks in the pneumatic systems as described in Section 11.5.1. Leaks can dilute the span gas and, hence, the concentration that the analyzer measures may fall short of the expected concentration defined in the CONC sub-menu.

• If the physical, low-level calibration has drifted (changed PMT response) or was accidentally altered by the user, a low-level calibration may be necessary to get the analyzer back into its proper range of expected values. One possible indicator of this scenario is a slope or offset value that is outside of its allowed range (0.7-1.3 for slope, -20 to 150 for offsets). See Section 11.6.3 on how to carry out a low-level hardware calibration.

11.3.5. Inability to Zero - No ZERO Key

In general, the M6200E will not display certain keyboard choices whenever the actual value of a parameter is outside of the expected range for that parameter. If the calibration menu does not show a ZERO key when carrying out a zero calibration, the actual gas concentration must be significantly different from the actual zero point (as per last calibration), which can have several reasons.

• Confirm that there is a good source of zero air. If the IZS option is installed, compare the zero reading from the IZS zero air source to an external zero air source using H₂S and SO₂ free air. Check the zero air scrubber for performance. It may need to be replaced (Section 9.3.3).

• Check to make sure that there is no ambient air leaking into the zero air line. Check for leaks in the pneumatic systems as described in Section 11.5.1.

11.3.6. Non-Linear Response

The M6200E was factory calibrated to a high level of H₂S and should be linear to within 1% of full scale. Common causes for non-linearity are

• Leaks in the pneumatic system. Leaks can add a constant of ambient air, zero air or span gas to the current sample gas stream, which may be changing in concentrations as the linearity test is performed. Check for leaks as described in Section 11.5.

• The calibration device is in error. Check flow rates and concentrations, particularly when using low concentrations. If a mass flow calibrator is used and the flow is less than 10% of the full scale flow on either flow controller, you may need to purchase lower concentration standards.

• The standard gases may be mislabeled as to type or concentration. Labeled concentrations may be outside the certified tolerance.

• The sample delivery system may be contaminated. Check for dirt in the sample lines or sample chamber.

• Calibration gas source may be contaminated.

• Dilution air contains sample or span gas.
• Sample inlet may be contaminated with H₂S exhaust from this or other analyzers. Verify proper venting of the pump exhaust.

• Span gas overflow is not properly vented and creates a back-pressure on the sample inlet port. Also, if the span gas is not vented at all and does not supply enough sample gas, the analyzer may be evacuating the sample line. Make sure to create and properly vent excess span gas.

• If the instrument is equipped with an intern IZS valve option and the H₂S span value is continuously trending downward, the IZS permeation tube may require replacement.

11.3.7. Discrepancy Between Analog Output and Display

If the concentration reported through the analog outputs does not agree with the value reported on the front panel, you may need to re-calibrate the analog outputs. This becomes more likely when using a low concentration or low analog output range. Analog outputs running at 0.1 V full scale should always be calibrated manually. See Section 6.9.4.3. for a detailed description of this procedure.

11.4. Other Performance Problems

Dynamic problems (i.e. problems which only manifest themselves when the analyzer is monitoring sample gas) can be the most difficult and time consuming to isolate and resolve. The following section provides an itemized list of the most common dynamic problems with recommended troubleshooting checks and corrective actions.

11.4.1. Excessive noise

Excessive noise levels under normal operation usually indicate leaks in the sample supply or the analyzer itself. Make sure that the sample or span gas supply is leak-free and carry out a detailed leak check as described earlier in this chapter.

Another possibility of excessive signal noise may be the preamplifier board, the high voltage power supply and/or the PMT detector itself. Contact the factory on trouble-shooting these components.

11.4.2. Slow Response

If the analyzer starts responding too slowly to any changes in sample, zero or span gas, check for the following:

• Dirty or plugged sample filter or sample lines.
• Sample inlet line is too long.
• Dirty or plugged critical flow orifices. Check flows (Section 11.5.2), pressures (Section 11.5.1) and, if necessary, change the critical flow orifice (Section 9.3.7).
• Wrong materials in contact with sample - use Teflon materials only.
• Sample vent line is located too far from the instrument sample inlet and causes long mixing and purge times. Locate sample inlet (overflow) vent as close as possible to the analyzer’s sample inlet port.
• Dirty sample chamber. Clean the sample chamber.
• Insufficient time allowed for purging of lines upstream of the analyzer.
• Insufficient time allowed for H₂S calibration gas source to become stable.

11.4.3. The Analyzer Doesn’t Appear on the LAN or Internet

Most problems related to internet communications via the Ethernet card option will be due to problems external to the analyzer (e.g. bad network wiring or connections, failed routers, malfunctioning servers, etc.) However there are several symptoms that indicate the problem may be with the Ethernet card itself.

• If none of the Ethernet’s cards four status LED’s (located on the analyzer’s rear panel) is lit, it is possible that the card is not receiving power or is suffering from a massive failure.

• Under the Setup – CFG menu (see Section 6.5) the firmware revision of the iChip processor on the Ethernet card should be listed. It will appear something like:

```
SAMPLE  iChip Rev. IL702P16 1.3
NEXT    PREV                                           EXIT
```

If “????” appears as the revision number, something is preventing the iChip from being initialized.

• On initial start up after iChip driver is enabled the analyzer’s COMM port driver tests the iChip to determine the baud rate at which it is set to function. This test occurs when the instrument is approximately 75% though its boot-up procedure and takes about 90 seconds to complete.

 This test should only occur on the initial start up of the analyzer after the Ethernet card is installed and activated (usually at the factory). A 90 second pause at this point in its boot process every time it is turned on could indicate that a problem exists with the iChip itself, the Ethernet card or the analyzer’s Disk-on-Chip memory that is preventing it from holding the proper baud rate setting for the COM2 port in memory.

11.5. Subsystem Checkout

The preceding sections of this manual discussed a variety of methods for identifying possible sources of failures or performance problems within the analyzer. In most cases this included a list of possible causes and, in some cases, quick solutions or at least a pointer to the appropriate sections describing them. This section describes how to determine if a certain component or subsystem is actually the cause of the problem being investigated.
11.5.1. Detailed Pressure Leak Check

Obtain a leak checker similar to Teledyne Analytical Instruments part number 01960, which contains a small pump, shut-off valve, and pressure gauge to create both over-pressure and vacuum. Alternatively, a tank of pressurized gas, with the two stage regulator adjusted to ≤ 15 psi, a shutoff valve and pressure gauge may be used.

CAUTION

Once tube fittings have been wetted with soap solution under a pressurized system, do not apply or re-apply vacuum as this will cause soap solution to be sucked into the instrument, contaminating inside surfaces.

Do not exceed 15 PSI when pressurizing the system.

1. Turn OFF power to the instrument and remove the instrument cover.

2. Install a leak checker or a tank of gas (compressed, oil-free air or nitrogen) as described above on the sample inlet at the rear panel.

3. Pressurize the instrument with the leak checker or tank gas, allowing enough time to fully pressurize the instrument through the critical flow orifice. Check each tube connection (fittings, hose clamps) with soap bubble solution, looking for fine bubbles. Once the fittings have been wetted with soap solution, do not re-apply vacuum as it will draw soap solution into the instrument and contaminate it. Do not exceed 15 psi pressure.

4. If the instrument has the zero and span valve option, the normally closed ports on each valve should also be separately checked. Connect the leak checker to the normally closed ports and check with soap bubble solution.

5. If the analyzer is equipped with an IZS Option, connect the leak checker to the Dry Air inlet and check with soap bubble solution.

6. Once the leak has been located and repaired, the leak-down rate of the indicated pressure should be less than 1 in-Hg-A (0.4 psi) in 5 minutes after the pressure is turned off.

7. Clean soap solution from all surfaces, re-connect the sample and exhaust lines and replace the instrument cover. Restart the analyzer.

11.5.2. Performing a Sample Flow Check

CAUTION

Use a separate, calibrated flow meter capable of measuring flows between 0 and 1000 cm³/min to measure the gas flow rate through the analyzer. Do not use the built in flow measurement viewable from the front panel of the instrument.

Sample flow checks are useful for monitoring the actual flow of the instrument, to monitor drift of the internal flow measurement. A decreasing, actual sample flow may point to slowly clogging
pneumatic paths, most likely critical flow orifices or sintered filters. To perform a sample flow check:
1. Disconnect the sample inlet tubing from the rear panel SAMPLE port shown in Figure 3-2.
2. Attach the outlet port of a flow meter to the sample inlet port on the rear panel. Ensure that the inlet to the flow meter is at atmospheric pressure.
3. The sample flow measured with the external flow meter should be 500 cm³/min ± 10%. If a combined sample/ozone air Perma Pure dryer is installed (optional equipment), the flow will be 640 cm³/min ± 10% (500 cm³/min for the sample and 140 cm³/min for the ozone generator supply air).
4. Low flows indicate blockage somewhere in the pneumatic pathway.

11.5.3. AC Power Configuration

The M6200E can be easily configured for two main power regimes, 100-120 V and 220-240 V at either 50 or 60 Hz. The analyzer is correctly configured for the AC power voltage in use if it turns on and shows a front panel display after about 30 seconds. Internally, several LEDs should turn on as soon as the power is supplied. If an incorrect power configuration is suspected, check for the correct voltage and frequency at the line input on the rear panel.

If the unit is set for 220-240 V and is plugged into 100-120 V, the analyzer will not start.

If the unit is set for 100-120 V and is plugged into 220-240 V, the circuit breaker built into the ON/OFF Switch on the front panel will trip to the OFF position immediately after power is switched on. Note that the analyzer will be severely damaged if 220-240 V is supplied to it when configured for 100-120 V. Never bypass the power switch or circuit breaker.

11.5.4. DC Power Supply

If you have determined that the analyzer’s AC main power is working, but the unit is still not operating properly, there may be a problem with one of the instrument’s switching power supplies, which convert AC power to 5 and ±15 V (PS1) as well as +12 V DC power (PS2). The supplies can either have DC output at all or a noisy output (fluctuating).

To assist tracing DC Power Supply problems, the wiring used to connect the various printed circuit assemblies and DC powered components and the associated test points on the relay board follow a standard color-coding scheme as defined in Table 11-4.

<table>
<thead>
<tr>
<th>NAME</th>
<th>TEST POINT#</th>
<th>COLOR</th>
<th>DEFINITION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DGND</td>
<td>1</td>
<td>Black</td>
<td>Digital ground</td>
</tr>
<tr>
<td>+5V</td>
<td>2</td>
<td>Red</td>
<td></td>
</tr>
<tr>
<td>AGND</td>
<td>3</td>
<td>Green</td>
<td>Analog ground</td>
</tr>
<tr>
<td>+15V</td>
<td>4</td>
<td>Blue</td>
<td></td>
</tr>
<tr>
<td>-15V</td>
<td>5</td>
<td>Yellow</td>
<td></td>
</tr>
<tr>
<td>+12V</td>
<td>6</td>
<td>Purple</td>
<td></td>
</tr>
<tr>
<td>+12R</td>
<td>7</td>
<td>Orange</td>
<td>12 V return (ground) line</td>
</tr>
</tbody>
</table>

Table 11-4: DC Power Test Point and Wiring Color Code
A voltmeter should be used to verify that the DC voltages are correct as listed in Table 11-5. An oscilloscope, in AC mode and with band limiting turned on, can be used to evaluate if the supplies are excessively noisy (>100 mV peak-to-peak).

Table 11-5: DC Power Supply Acceptable Levels

<table>
<thead>
<tr>
<th>POWER SUPPLY</th>
<th>VOLTAGE</th>
<th>CHECK RELAY BOARD TEST POINTS</th>
<th>MIN V</th>
<th>MAX V</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>From Test Point</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>To Test Point</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Name</td>
<td>#</td>
<td>Name</td>
</tr>
<tr>
<td>PS1</td>
<td>+5</td>
<td>DGND</td>
<td>1</td>
<td>+5</td>
</tr>
<tr>
<td>PS1</td>
<td>+15</td>
<td>AGND</td>
<td>3</td>
<td>+15</td>
</tr>
<tr>
<td>PS1</td>
<td>-15</td>
<td>AGND</td>
<td>3</td>
<td>-15V</td>
</tr>
<tr>
<td>PS1</td>
<td>AGND</td>
<td>DGND</td>
<td>1</td>
<td>DGND</td>
</tr>
<tr>
<td>PS1</td>
<td>Chassis</td>
<td>DGND</td>
<td>1</td>
<td>Chassis</td>
</tr>
<tr>
<td>PS2</td>
<td>+12</td>
<td>+12V Ret</td>
<td>6</td>
<td>+12V</td>
</tr>
<tr>
<td>PS2</td>
<td>DGND</td>
<td>+12V Ret</td>
<td>6</td>
<td>DGND</td>
</tr>
</tbody>
</table>

11.5.5. I²C Bus

Operation of the I²C bus can be verified by observing the behavior of the LED labeled D1 on the relay board in conjunction with the performance of the front panel display. Assuming that the DC power supplies are operating properly and the wiring from the motherboard to the keyboard as well as from the keyboard to the relay board is intact, the I²C bus is operating properly if:

- D1 on the relay board is flashing or;
- D1 is not flashing but pressing a key on the front panel results in a change to the display.

If the display is locked up or if the analyzer is not booting up at all, the I²C bus may be the cause. Contact customer service if you suspect a problem with the I²C bus.

11.5.6. Keyboard / Display Interface

The front panel keyboard, the display and the keyboard/display circuit board can be verified by observing the operation of the display when power is applied to the instrument and when a key is pressed on the front panel. Assuming that there are no wiring problems and that the DC power supplies are operating properly:

- The vacuum fluorescent display is working properly if, on power-up, a "-" character is visible on the upper left hand corner of the display.
- If the analyzer starts operation with a normal display but pressing a key on the front panel does not change the display, then there are three possible problems:
 - One or more of the keys is bad
 - The interrupt signal between the keyboard circuit and the motherboard is broken due to a cabling problem or
 - The keyboard circuit is bad.
You can verify this failure by logging on to the instrument using APICOM or a terminal program. If the analyzer responds to remote commands and the display changes accordingly, the display wiring or the I²C bus may be faulty.

11.5.7. Relay Board

The relay board circuit can most easily be checked by observing the condition of its status LEDs as described in Section 11.1.4, and the associated output when toggled on and off through the SIGNAL I/O function in the DIAG menu, see Section 6.9.2.

If the front panel display responds to key presses and D1 on the relay board is not flashing, then either the I²C connection between the motherboard and the relay board is bad, or the relay board itself is bad.

If D1 on the relay board is flashing, but toggling an output in the Signal I/O function menu does not toggle the output’s status LED, there is a circuit problem, or possibly a blown driver chip, on the relay board.

If D1 on the Relay board is flashing and the status indicator for the output in question (heater, valve, etc.) toggles properly using the Signal I/O function, but the output device does not turn on/off, then the associated device (valve or heater) or its control device (valve driver, heater relay) is malfunctioning.

Several of the control devices are in sockets and can easily be replaced. The table below lists the control device associated with a particular function:

<table>
<thead>
<tr>
<th>FUNCTION</th>
<th>CONTROL DEVICE</th>
<th>SOCKETED</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valve0 – Valve3</td>
<td>U5</td>
<td>Yes</td>
</tr>
<tr>
<td>Valve4 – Valve7</td>
<td>U6</td>
<td>Yes</td>
</tr>
<tr>
<td>All heaters</td>
<td>K1-K5</td>
<td>Yes</td>
</tr>
</tbody>
</table>

11.5.8. Motherboard

11.5.8.1. A/D functions

A basic check of the analog to digital (A/D) converter operation on the motherboard is to use the Signal I/O function under the DIAG menu. Check the following two A/D reference voltages and input signals that can be easily measured with a voltmeter.

- Using the Signal I/O function (Section 6.9.2 and Appendix D), view the value of REF_4096_MV and REF_GND. If these signals are within 10 mV and 3 mV, respectively, of their nominal values (4096 and 0) and are stable to within ±0.5 mV, the basic A/D converter is functioning properly. If these values fluctuate largely or are off by more than specified above, one or more of the analog circuits may be overloaded or the motherboard may be faulty.

- Choose one parameter in the Signal I/O function such as SAMPLE_PRESSURE (see previous section on how to measure it). Compare its actual voltage with the voltage displayed through the SIGNAL I/O function. If the wiring is intact but there is a difference of more than ±10 mV between the measured and displayed voltage, the motherboard may be faulty.
11.5.8.2. Analog Output Voltages

To verify that the analog outputs are working properly, connect a voltmeter to the output in question and perform an analog output step test as described in Section 6.9.3.

For each of the steps, taking into account any offset that may have been programmed into the channel (Section 6.9.4.4), the output should be within 1% of the nominal value listed in the table below except for the 0% step, which should be within 2-3 mV. If one or more of the steps is outside of this range, a failure of one or both D/A converters and their associated circuitry on the motherboard is likely.

<table>
<thead>
<tr>
<th>Table 11-7: Analog Output Test Function - Nominal Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>FULL SCALE OUTPUT VOLTAGE</td>
</tr>
<tr>
<td>100MV</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

11.5.8.3. Status Outputs

The procedure below can be used to test the Status outputs.

1. Connect a cable jumper between the "-" pin and the "\/^" pin on the status output connector.

2. Connect a 1000 Ω resistor between the +5 V and the pin for the status output that is being tested.

3. Connect a voltmeter between the "-" pin and the pin of the output being tested (Table 11-8).

4. Under the **DIAG / SIGNAL I/O** menu (Section 6.9.2), scroll through the inputs and outputs until you get to the output in question. Alternately turn on and off the output noting the voltage on the voltmeter, it should vary between 0 volts for ON and 5 volts for OFF.
11.5.8.4. Control Inputs

The control input bits can be tested by the following procedure:

1. Connect a jumper from the +5 V pin on the STATUS connector to the +5 V on the CONTROL IN connector.

2. Connect a second jumper from the '-' pin on the STATUS connector to the A pin on the CONTROL IN connector. The instrument should switch from SAMPLE mode to ZERO CAL R mode.

3. Connect a second jumper from the '-' pin on the STATUS connector to the B pin on the CONTROL IN connector. The instrument should switch from SAMPLE mode to SPAN CAL R mode.

In each case, the M6200E should return to SAMPLE mode when the jumper is removed.

11.5.9. CPU

There are two major types of CPU board failures, a complete failure and a failure associated with the Disk-On-Chip (DOC). If either of these failures occur, contact the factory.

- For complete failures, assuming that the power supplies are operating properly and the wiring is intact, the CPU is faulty if on power-on:
 - The watchdog LED on the motherboard is not flashing
 - There is no activity from the primary RS-232 port (COM1) on the rear panel even if "? <ret>" is pressed. Note that the RS-232 port has programmable baud rates from 200 to 115200 baud. Since the CPU board remembers the programmed baud rate even when power is off, this means that there is no default baud rate for the port when the instrument boots up, the rate will be whatever it was last programmed to be. In some cases, configuration memory might be corrupted, and the baud rate could be a random unrelated value. For these reasons, it is best to test all possible baud rates when performing this test. See the RS-232 Communication section below, for more details regarding port configuration.

In some rare circumstances, this failure may be caused by a bad IC on the motherboard, specifically U57, the large, 44 pin device on the lower right hand side of the board. If this is true, removing U57 from its socket will allow the instrument to start up but the measurements will be invalid.

- If the analyzer stops during initialization (the vacuum fluorescent display shows some text), it is likely that the DOC, the firmware or the configuration and data files have been corrupted.

11.5.10. RS-232 Communication

11.5.10.1. General RS-232 Troubleshooting

Teledyne Analytical Instruments analyzers use the RS-232 protocol as the standard, serial communications protocol. RS-232 is a versatile standard, which has been used for many years but, at times, is difficult to configure. Teledyne Analytical Instruments conforms to the standard
pin assignments in the implementation of RS-232. Problems with RS-232 connections usually center around 4 general areas:

- Incorrect cabling and connectors. This is the most common problem. See Figure 6-8 for connector and pin-out information and Section 6.10.3.
- The communications (baud) rate and protocol parameters are incorrectly configured. See Section 6.10.6 on how to set the baud rate.
- The COM port communications mode is set incorrectly (Section 6.10.8).
- If a modem is used, additional configuration and wiring rules must be observed. See Section 6.12.2.6.
- Incorrect setting of the DTE - DCE Switch is set correctly See Section 6.10.5.

11.5.10.2. Modem or Terminal Operation

These are the general steps for troubleshooting problems with a modem connected to a Teledyne Analytical Instruments analyzer.

- Check cables for proper connection to the modem, terminal or computer.
- Check the correct position of the DTE/DCE as described in Section 6.10.5.
- Check the correct setup command (Section 6.12.2.6.)
- Verify that the Ready to Send (RTS) signal is at logic high. The M6200E sets pin 7 (RTS) to greater than 3 volts to enable modem transmission.
- Make sure the baud rate, word length, and stop bit settings between modem and analyzer match, see Section 6.12.2.6. and Section 6.10.
- Use the RS-232 test function to send “w” characters to the modem, terminal or computer; See Section 6.10.10.
- Get your terminal, modem or computer to transmit data to the analyzer (holding down the space bar is one way). The green LED on the rear panel should flicker as the instrument is receiving data.
- Make sure that the communications software is functioning properly.

11.5.11. PMT Sensor

The photo multiplier tube detects the light emitted by the UV excited fluorescence of H2S. It has a gain of about 500000 to 1000000. It is not possible to test the detector outside of the instrument in the field. The best way to determine if the PMT is working properly is by using the optical test (OTEST), which is described in Section 6.9.5. The basic method to diagnose a PMT fault is to eliminate the other components using ETTEST, OTEST and specific tests for other sub-assemblies.
11.5.12. PMT Preamplifier Board

To check the correct operation of the preamplifier board, we suggest the technician carry out the electrical and optical tests described in 6.8.5. and 6.8.6. If the ETEST fails, the preamplifier board may be faulty.

11.5.13. PMT Temperature Control PCA

The TEC control printed circuit assembly is located on the sensor housing assembly, under the slanted shroud, next to the cooling fins and directly above the cooling fan.

If the red LED located on the top edge of this assembly is not glowing the control circuit is not receiving power. Check the analyzers power supply, the Relay boards power distribution circuitry and the wiring connecting them to the PMT temperature control PCA.

TEC Control Test Points

Four test points are also located at the top of this assembly they are numbered left to right start with the T1 point immediately to the right of the power status LED. These test points provide information regarding the functioning of the control circuit.

- To determine the current running through the control circuit, measure the voltage between T1 and T2. Multiply that voltage by 10.
- To determine the drive voltage being supplied by the control circuit to the TEC, measure the voltage between T2 and T3.
 - If this voltage is zero, the TEC circuitry is most likely open.
 - Or,
 - If the voltage between T2 and T3 = 0 VDC and the voltage measured between T1 and T2 = 0 VDC there is most likely an open circuit or failed op amp on control PCA itself
 - If the voltage between T2 and T3 = 0 VDC and the voltage measured between T1 to T2 is some voltage other than 0 VDC, the TEC is most likely shorted
 - T4 is tied directly to ground. To determine the absolute voltage on any of the other test points make a measurement between that test point ant T4.
11.5.14. High Voltage Power Supply

The HVPS is located in the interior of the sensor module and is plugged into the PMT tube (Figure 10-13). It requires 2 voltage inputs. The first is +15 which powers the supply. The second is the programming voltage which is generated on the Preamp Board. This power supply is unlike a traditional PMT HVPS. It is like having 10 independent power supplies, one to each pin of the PMT. The test procedure below allows you to test each supply.

Adjustment of the HVPS is covered in the factory calibration procedure in Section 11.6.3.

11.5.15. Pneumatic Sensor Assembly

The pressure/flow sensor circuit board, located behind the sensor assembly, can be checked with a voltmeter using the following procedure, which assumes that the wiring is intact and that the motherboard and the power supplies are operating properly.

Measure the voltage across TP1 and TP2, it should be 10.0 ± 0.25 V. If not, the board is faulty.

Measure the voltage across capacitor C2, it should be 5.0 ± 0.25 V. If not, the board may be faulty.

11.5.15.1. Sample Pressure

Measure the voltage across test points TP1 and TP4. With the sample pump disconnected or turned off, this voltage should be 4500 ± 250 mV. With the pump running, it should be about 0.2 V less as the sample pressure drops by about 1 in-Hg-A from ambient pressure. If this voltage is significantly different, the pressure transducer S2 or the board may be faulty. A leak in the sample system to vacuum may also cause this voltage to be between about 0.6 and 4.5. Make sure that the front panel reading of the sample pressure is at about 1 in-Hg-A less than ambient pressure.

11.5.16. IZS Option

The zero/span valves and IZS options need to be enabled in the software (contact the factory on how to do this). See Figure 5-2 and 5-3 for a flow diagram with zero/span valve or IZS option.

- Check for the physical presence of the valves or the IZS option.
- Check that a working perm-tube is installed in the IZS oven assembly.
- Check front panel for correct software configuration. When the instrument is in SAMPLE mode, the front panel display should show CALS and CALZ buttons in the second line of the display. The presence of the buttons indicates that the option has been enabled in software. In addition, the IZS option is enabled if the TEST functions show a parameter named IZS TEMP.

The semi-permeable PTFE membrane of the permeation tube is affected by humidity. If the instrument is installed in an air-conditioned shelter, the air is usually dry enough to produce good results. If the instrument is installed in an environment with variable or high humidity, variations in the permeation tube output will be significant. In this case, a dryer for the supply air is recommended (dew point should be -20° C or less).

The IZS option is heated with a proportional heater circuit and the temperature is maintained at 50° C ±1°. Check the IZS TEMP function via front panel display (Section 6.2.1) and the
IZS_TEMP signal voltage using the **SIGNAL I/O** function under the **DIAG** Menu (Section 6.9.2). At 50° C, the temperature signal from the IZS thermistor should be around 2500 mV.

11.5.17. Box Temperature

The box temperature sensor (thermistor) is mounted on the motherboard at the bottom, right corner of the CPU board when looking at it from the front. It cannot be disconnected to check its resistance. Box temperature will vary with, but will always read about 5° C higher than, ambient (room) temperature because of the internal heating zones from the H2S converter, sample chamber and other devices. To check the box temperature functionality, we recommend to check the **BOX_TEMP** signal voltage using the **SIGNAL I/O** function under the **DIAG** Menu (Section 6.9.2). At about 30° C (5° above typical room temperature), the signal should be around 1500 mV. We recommend to use a certified or calibrated external thermometer / temperature sensor to verify the accuracy of the box temperature.

11.5.18. PMT Temperature

PMT temperature should be low and constant. It is more important that this temperature is maintained constant than it is to maintain it low. The PMT cooler uses a Peltier, thermo-electric element powered by 12 VDC from the switching power supply PS2. The temperature is controlled by a proportional temperature controller located on the preamplifier board. Voltages applied to the cooler element vary from +/- 0.1 to +/- 12 VDC. The temperature set point (hard-wired into the preamplifier board) will vary by about +1° C due to component tolerances. The actual temperature will be maintained to within 0.1° C around that set point. On power-up of the analyzer, the front panel enables the user to watch that temperature drop from about ambient temperature down to its set point of 6-8° C. If the temperature fails to drop after 20 minutes, there is a problem in the cooler circuit. If the control circuit on the preamplifier board is faulty, a temperature of -1° C is reported.

11.6. Repair Procedures

This section contains some procedures that may need to be performed when a major component of the analyzer requires repair or replacement. Note that replacement procedures that are discussed in detail in Chapter 9 (Maintenance) are not listed here. Servicing of circuit components requires electrostatic discharge protection, i.e. ESD grounding straps, mats and containers. Failure to use ESD protection when working with electronic assemblies will void the instrument warranty.

11.6.1. Disk-on-Chip Replacement

Replacing the Disk-on-Chip (DOC) will cause all of the instrument configuration parameters to be lost unless the replacement chip carries the exact same firmware version. If the analyzer is equipped with at least one EEPROM flash chip, the configuration settings are stored in a backup file on the EEPROM. It is recommended to document all analyzer parameters that may have been changed, such as calibration, range, auto-cal, analog output, serial port and other settings before replacing the chip.

1. Turn off power to the instrument, fold down the rear panel by loosening the mounting screws.

2. When looking at the electronic circuits from the back of the analyzer, locate the Disk-on-Chip in the right-most socket of the CPU board. The chip should carry a label with firmware
revision, date and initials of the programmer. Remove the IC with a dedicated IC removal tool or by gently prying it up from the socket. Do not bend the connector pins.

3. Install the new Disk-on-Chip, making sure the notch at the end of the chip matches the notch in the socket. It may be necessary to straighten the pins somewhat to fit them into the socket. Press the chip all the way in.

4. Close the rear panel and turn on power to the machine.

Generally, all of the setup information will need to be re-entered, unless the firmware revision has not changed and the analyzer is equipped and properly configured with an EEPROM chip. Whenever changing the version of installed software, the memory must be reset. Failure to ensure that memory is reset can cause the analyzer to malfunction, and invalidate measurements. Note especially that the A/D converter must be re-calibrated, and all information collected in step 1 above must be re-entered before the instrument will function correctly.

11.6.2. Flash Chip Replacement or Upgrade

The M6200E CPU board can accommodate up to two EEPROM flash chips. The standard configuration is one chip with 64 kb of storage capacity, which is used to store a backup of the analyzer configuration as created during final checkout at the factory. Replacing this chip will erase that backup configuration, which will be replaced with a new copy when restarting the analyzer. However, if the firmware and/or the DOC is changed at the same time, all analyzer configuration settings and iDAS data will be lost. In this case, refer to the previous section on how to back up your settings. Adding a second EEPROM chip to the existing chip will double memory but this procedure will require a BIOS configuration. Contact the factory for details.

1. Turn off power to the instrument, fold down the rear panel by loosening the mounting screws.

2. When looking at the electronic circuits from the back of the analyzer, locate the EEPROM chip in the left-most socket of the CPU board. The chip is square with one corner cut off, the socket is shaped accordingly. Remove the old chip by using a special tool or gently pry the chip out using a very fine screwdriver. Make sure not to bend or destroy any of the contacts of the socket.

3. Reinstall the new or additional EEPROM chip, making sure the cut-off edge matches that of the socket. Press the chip symmetrically and straight all the way in.

4. Close the rear panel and turn on power to the machine.

11.6.3. Factory Cal (PMT Sensor, Hardware Calibration)

The sensor module hardware calibration adjusts the slope of the PMT output when the Instruments slope and offset values are outside of the acceptable range and all other more obvious causes for this problem have been eliminated.

1. Set the instrument reporting range to **SNGL** (Section 6.7.4)

2. Perform a full zero calibration using zero air (Section 7.2, 7.4, 7.4 or 7.8).

3. Let the instrument run for one hour to stabilize the lamp and run a lamp calibration from the diagnostic menu. This is required to ensure proper scaling of the **NORM PMT** value.
4. Locate the Preamp board (Figure 3-9).

5. Locate the Following Components On the Preamp board (Figure 11-4):
 - HVPS coarse adjustment switch (Range 0-9, then A-F)
 - HVPS fine adjustment switch (Range 0-9, then A-F)
 - Gain adjustment potentiometer (Full scale is 10 turns).

6. Turn the gain adjustment potentiometer 12 turns clockwise to its maximum setting.

7. While feeding 400 ppb H₂S (or 80% range value) to the analyzer and waiting until the STABIL value is below 0.5 ppb, look at the front panel and scroll to the NORM PMT value. This value should always be two times the span gas concentration in ppb. With 400 ppb H₂S, the NORM PMT should show 800 mV on a properly calibrated analyzer.

8. Set the HVPS coarse adjustment to its minimum setting (0). Set the HVPS fine adjustment switch to its maximum setting (F).

9. Set the HVPS coarse adjustment switch to the lowest setting that will give you more than 800 mV NORM PMT signal. The coarse adjustment typically increments the NORM PMT signal in 100-300 mV steps.

10. Adjust the HVPS fine adjustment such that the NORM PMT value is just above 800 mV. It may be necessary to go back and forth between coarse and fine adjustments if the proper value is at the threshold of the min/max coarse setting.
NOTE

Do not overload the PMT by accidentally setting both adjustment switches to their maximum setting. This can cause permanent damage to the PMT.

11. Adjust the NORM PMT value with the gain potentiometer down to 800±10 mV. This is the final very-fine adjustment.

12. Perform software span and zero calibrations (, 7.5Section 7.2, 7.4 or 7.8) to normalize the sensor response to its new PMT sensitivity.

13. Review the slope and offset values, the slopes should be 1.000±0.300 and the offset values should be 0±20 mV (-20 to +150 mV is allowed)

11.7. Technical Assistance

If this manual and its trouble-shooting / repair sections do not solve your problems, technical assistance may be obtained from Teledyne Analytical Instruments, Customer Service, 16830 Chestnut St., City of Industry Ca. 91748, or Phone: 626-951-9221. Before you contact customer service, fill out the problem report form in Appendix C, which is also available online for electronic submission at http://www.teledyne-ai.com.

User Notes:
12. A PRIMER ON ELECTRO-STATIC DISCHARGE

Teledyne Analytical Instruments considers the prevention of damage caused by the discharge of static electricity to be extremely important part of making sure that your analyzer continues to provide reliable service for a long time. This section describes how static electricity occurs, why it is so dangerous to electronic components and assemblies as well as how to prevent that damage from occurring.

12.1. How Static Charges are Created

Modern electronic devices such as the types used in the various electronic assemblies of your analyzer, are very small, require very little power and operate very quickly. Unfortunately the same characteristics that allow them to do these things also makes them very susceptible to damage from the discharge of static electricity. Controlling electrostatic discharge begins with understanding how electro-static charges occur in the first place.

Static electricity is the result of something called triboelectric charging which happens whenever the atoms of the surface layers of two materials rub against each other. As the atoms of the two surfaces move together and separate, some electrons from one surface are retained by the other.

![Figure 12-1: Triboelectric Charging](image)

If one of the surfaces is a poor conductor or even a good conductor that is not grounded, the resulting positive or negative charge can not bleed off and becomes trapped in place, or static. The most common example of triboelectric charging happens when someone wearing leather or rubber soled shoes walks across a nylon carpet or linoleum tiled floor. With each step electrons change places and the resulting electro-static charge builds up, quickly reaching significant levels. Pushing an epoxy printed circuit board across a workbench, using a plastic handled screwdriver or even the constant jostling of Styrofoam™ pellets during shipment can also build hefty static charges.
Table 12-1: Static Generation Voltages for Typical Activities

<table>
<thead>
<tr>
<th>MEANS OF GENERATION</th>
<th>65-90% RH</th>
<th>10-25% RH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walking across nylon carpet</td>
<td>1,500V</td>
<td>35,000V</td>
</tr>
<tr>
<td>Walking across vinyl tile</td>
<td>250V</td>
<td>12,000V</td>
</tr>
<tr>
<td>Worker at bench</td>
<td>100V</td>
<td>6,000V</td>
</tr>
<tr>
<td>Poly bag picked up from bench</td>
<td>1,200V</td>
<td>20,000V</td>
</tr>
<tr>
<td>Moving around in a chair padded with urethane foam</td>
<td>1,500V</td>
<td>18,000V</td>
</tr>
</tbody>
</table>

12.2. How Electro-Static Charges Cause Damage

Damage to components occurs when these static charges come in contact with an electronic device. Current flows as the charge moves along the conductive circuitry of the device and the typically very high voltage levels of the charge overheat the delicate traces of the integrated circuits, melting them or even vaporizing parts of them. When examined by microscope the damage caused by electro-static discharge looks a lot like tiny bomb craters littered across the landscape of the component’s circuitry.

A quick comparison of the values in Table 12-1 with the those shown in the Table 12-2, listing device susceptibility levels, shows why *Semiconductor Reliability News* estimates that approximately 60% of device failures are the result of damage due to electro-static discharge.

Table 12-2: Sensitivity of Electronic Devices to Damage by ESD

<table>
<thead>
<tr>
<th>DEVICE</th>
<th>DAMAGE SUSCEPTIBILITY VOLTAGE RANGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DAMAGE BEGINS OCCURRING AT</td>
</tr>
<tr>
<td>MOSFET</td>
<td>10</td>
</tr>
<tr>
<td>VMOS</td>
<td>30</td>
</tr>
<tr>
<td>NMOS</td>
<td>60</td>
</tr>
<tr>
<td>GaAsFET</td>
<td>60</td>
</tr>
<tr>
<td>EPROM</td>
<td>100</td>
</tr>
<tr>
<td>JFET</td>
<td>140</td>
</tr>
<tr>
<td>SAW</td>
<td>150</td>
</tr>
<tr>
<td>Op-AMP</td>
<td>190</td>
</tr>
<tr>
<td>CMOS</td>
<td>200</td>
</tr>
<tr>
<td>Schottky Diodes</td>
<td>300</td>
</tr>
<tr>
<td>Film Resistors</td>
<td>300</td>
</tr>
<tr>
<td>This Film Resistors</td>
<td>300</td>
</tr>
<tr>
<td>ECL</td>
<td>500</td>
</tr>
<tr>
<td>SCR</td>
<td>500</td>
</tr>
<tr>
<td>Schottky TTL</td>
<td>500</td>
</tr>
</tbody>
</table>
Potentially damaging electro-static discharges can occur:

- Any time a charged surface (including the human body) discharges to a device. Even simple contact of a finger to the leads of an sensitive device or assembly can allow enough discharge to cause damage. A similar discharge can occur from a charged conductive object, such as a metallic tool or fixture.

- When static charges accumulated on a sensitive device discharges from the device to another surface such as packaging materials, work surfaces, machine surfaces or other device. In some cases, charged device discharges can be the most destructive.

 A typical example of this is the simple act of installing an electronic assembly into the connector or wiring harness of the equipment in which it is to function. If the assembly is carrying a static charge, as it is connected to ground a discharge will occur.

- Whenever a sensitive device is moved into the field of an existing electro-static field, a charge may be induced on the device in effect discharging the field onto the device. If the device is then momentarily grounded while within the electrostatic field or removed from the region of the electrostatic field and grounded somewhere else, a second discharge will occur as the charge is transferred from the device to ground.

12.3. Common Myths About ESD Damage

- **I didn’t feel a shock so there was no electro-static discharge:** The human nervous system isn’t able to feel a static discharge of less than 3500 volts. Most devices are damaged by discharge levels much lower than that.

- **I didn’t touch it so there was no electro-static discharge:** Electro Static charges are fields whose lines of force can extend several inches or sometimes even feet away from the surface bearing the charge.

- **It still works so there was no damage:** Sometimes the damaged caused by electro-static discharge can completely sever a circuit trace causing the device to fail immediately. More likely, the trace will be only partially occluded by the damage causing degraded performance of the device or worse, weakening the trace. This weakened circuit may seem to function fine for a short time, but even the very low voltage and current levels of the device’s normal operating levels will eat away at the defect over time causing the device to fail well before its designed lifetime is reached.

 These latent failures are often the most costly since the failure of the equipment in which the damaged device is installed causes down time, lost data, lost productivity, as well as possible failure and damage to other pieces of equipment or property.

- **Static Charges can’t build up on a conductive surface:** There are two errors in this statement.

 Conductive devices can build static charges if they are not grounded. The charge will be equalized across the entire device, but without access to earth ground, they are still trapped and can still build to high enough levels to cause damage when they are discharged.

 A charge can be induced onto the conductive surface and/or discharge triggered in the presence of a charged field such as a large static charge clinging to the surface of a nylon jacket of someone walking up to a workbench.
As long as my analyzer is properly installed it is safe from damage caused by static discharges: It is true that when properly installed the chassis ground of your analyzer is tied to earth ground and its electronic components are prevented from building static electric charges themselves. This does not, however, prevent discharges from static fields built up on other things, like you and your clothing, from discharging through the instrument and damaging it.

12.4. Basic Principles of Static Control

It is impossible to stop the creation of instantaneous static electric charges. It is not, however difficult to prevent those charges from building to dangerous levels or prevent damage due to electro-static discharge from occurring.

12.4.1. General Rules

Only handle or work on all electronic assemblies at a properly set up ESD station. Setting up an ESD safe work station need not be complicated. A protective mat properly tied to ground and a wrist strap are all that is needed to create a basic anti-ESD workstation (see figure 11-X).

![Basic anti-ESD Work Station](image.png)
For technicians that work in the field, special lightweight and portable anti-ESD kits are available from most suppliers of ESD protection gear. These include everything needed to create a temporary anti-ESD work area anywhere.

- **Always wear an Anti-ESD wrist strap when working on the electronic assemblies of your analyzer.** An anti-ESD wrist strap keeps the person wearing it at or near the same potential as other grounded objects in the work area and allows static charges to dissipate before they can build to dangerous levels. Anti-ESD wrist straps terminated with alligator clips are available for use in work areas where there is no available grounded plug.

 Also, anti-ESD wrist straps include a current limiting resistor (usually around one meg-ohm) that protects you should you accidentally short yourself to the instrument’s power supply.

- **Simply touching a grounded piece of metal is insufficient.** While this may temporarily bleed off static charges present at the time, once you stop touching the grounded metal new static charges will immediately begin to re-build. In some conditions a charge large enough to damage a component can rebuild in just a few seconds.

- **Always store sensitive components and assemblies in anti-ESD storage bags or bins:** Even when you are not working on them, store all devices and assemblies in a closed anti-Static bag or bin. This will prevent induced charges from building up on the device or assembly and nearby static fields from discharging through the it.

- **Use metallic anti-ESD bags for storing and shipping ESD sensitive components and assemblies rather than pink-poly bags.** The famous, pink-poly bags are made of a plastic that is impregnated with a liquid (similar to liquid laundry detergent) which very slowly sweats onto the surface of the bag creating a slightly conductive layer over the surface of the bag.

 While this layer may equalizes any charges that occur across the whole bag, it does not prevent the build up of static charges. If laying on a conductive grounded surface, these bags will allow charges to bleed away but the very charges that build up on the surface of the bag itself can be transferred through the bag by induction onto the circuits of your ESD sensitive device. Also, the liquid impregnating the plastic is eventually used up after which the bag is as useless for preventing damage from ESD as any ordinary plastic bag.

 Anti-Static bags made of plastic impregnated with metal (usually silvery in color) provide all of the charge equalizing abilities of the pink-poly bags but also, when properly sealed, create a Faraday cage that completely isolates the contents from discharges and the inductive transfer of static charges.

 Storage bins made of plastic impregnated with carbon (usually black in color) are also excellent at dissipating static charges and isolating their contents from field effects and discharges.

- **Never use ordinary plastic adhesive tape near an ESD sensitive device or to close an anti-ESD bag.** The act of pulling a piece of standard plastic adhesive tape, such as Scotch® tape, from its roll will generate a static charge of several thousand or even tens of thousands of volts on the tape itself and an associated field effect that can discharge through or be induced upon items up to a foot away.
12.4.2. Basic anti-ESD Procedures for Analyzer Repair and Maintenance

12.4.2.1. Working at the Instrument Rack

When working on the analyzer while it is in the instrument rack and plugged into a properly grounded power supply

1. Attach your anti-ESD wrist strap to ground before doing anything else.
 - Use a wrist strap terminated with an alligator clip and attach it to a bare metal portion of the instrument chassis. This will safely connect you to the same ground level to which the instrument and all of its components are connected.

2. Pause for a second or two to allow any static charges to bleed away.

3. Open the casing of the analyzer and begin work. Up to this point the closed metal casing of your analyzer has isolated the components and assemblies inside from any conducted or induces static charges.

4. If you must remove a component from the instrument, do not lay it down on a non-ESD preventative surface where static charges may lie in wait.

5. Only disconnect your wrist strap after you have finished work and closed the case of the analyzer.

12.4.2.2. Working at a Anti-ESD Work Bench.

When working on an instrument of an electronic assembly while it is resting on a anti-ESD work bench

1. Plug your anti-ESD wrist strap into the grounded receptacle of the work station before touching any items on the work station and while standing at least a foot or so away. This will allow any charges you are carrying to bleed away through the ground connection of the work station and prevent discharges due to field effects and induction from occurring.

2. Pause for a second or two to allow any static charges to bleed away.

3. Only open any anti-ESD storage bins or bags containing sensitive devices or assemblies after you have plugged your wrist strap into the work station.
 - Lay the bag or bin on the workbench surface.
 - Before opening the container, wait several seconds for any static charges on the outside surface of the container to be bled away by the work station’s grounded protective mat.
4. Do not pick up tools that may be carrying static charges while also touching or holding an ESD Sensitive Device.

 - Only lay tools or ESD-sensitive devices and assemblies on the conductive surface of your workstation. Never lay them down on a non-ESD preventative surfaces.

5. Place any static sensitive devices or assemblies in anti-static storage bags or bins and close the bag or bin before unplugging your wrist strap.

6. Disconnecting your wrist strap is always the last action taken before leaving the work bench.

12.4.2.3. Transferring Components from Rack To Bench and Back

When transferring a sensitive device from an installed Teledyne Analytical Instruments analyzer to a Anti-ESD workbench or back:

1. Follow the instructions listed above for working at the instrument rack and work station.

2. Never carry the component or assembly without placing it in a anti-ESD bag or bin.

3. Before using the bag or container allow any surface charges on it to dissipate:

 - If you are at the instrument rack hold the bag in one hand while your wrist strap is connected to a ground point.

 - If you are at a anti-ESD work bench, lay the container down on the conductive work surface.

 - In either case wait several seconds.

4. Place the item in the container.

5. Seal the container. If using a bag, fold the end over and fastening it with anti-ESD tape. Never use standard plastic adhesive tape as a sealer.

 - Folding the open end over isolates the component(s) inside from the effects of static fields.

 - Leaving the bag open or simply stapling it shut without folding it closed prevents the bag from forming a complete protective envelope around the device.

6. Once you have arrived at your destination, allow any surface charges that may have built up on the bag or bin during travel to dissipate:

 - Connect your wrist strap to ground.

 - If you are at the instrument rack hold the bag in one hand while your wrist strap is connected to a ground point.

 - If you are at a anti-ESD work bench, lay the container down on the conductive work surface

 - In either case wait several seconds

7. Open the container.
12.4.2.4. Opening Shipments from and Packing Components for Return to Teledyne Analytical Instruments Customer Service.

Packing materials such as bubble pack and Styrofoam pellets are extremely efficient generators of static electric charges. To prevent damage from ESD, Teledyne Analytical Instruments ships all electronic components and assemblies in properly sealed ant-ESD containers.

Static charges will build up on the outer surface of the anti-ESD container during shipping as the packing materials vibrate and rub against each other. To prevent these static charges from damaging the components or assemblies being shipped make sure that you:

- Always unpack shipments from Teledyne Analytical Instruments Customer Service by:
 - Opening the outer shipping box away from the anti-ESD work area
 - Carry the still sealed ant-ESD bag, tube or bin to the anti-ESD work area
 - Follow steps 6 and 7 of Section 12.4.2.3 above when opening the anti-ESD container at the work station
 - Reserve the anti-ESD container or bag to use when packing electronic components or assemblies to be returned to Teledyne Analytical Instruments

- Always pack electronic components and assemblies to be sent to Teledyne Analytical Instruments Customer Service in anti-ESD bins, tubes or bags.
 - Do not use pink-poly bags.
 - If you do not already have an adequate supply of anti-ESD bags or containers available, Teledyne Analytical Instruments’ Customer Service department will supply them (see Section 11.7 for contact information.
 - Always follow steps 1 through 5 of Section 12.4.1.3

User Notes:
APPENDIX A - Version Specific Software Documentation

APPENDIX A-1: Model 6200E Software Menu Trees
APPENDIX A-2: Model 6200E Setup Variables Available Via Serial I/O
APPENDIX A-3: Model 6200E Warnings and Test Measurements Via Serial I/O
APPENDIX A-4: Model 6200E Signal I/O Definitions
APPENDIX A-5: Model 6200E iDAS Functions
APPENDIX A-1: M6200E Software Menu Trees, Revision A.1

Figure A-1: Basic Sample Display Menu

1 Only appears when warning messages are activated (see Section 6.2.2)
2 Press this key to cycle through list of active warning messages.
3 Press this key to clear/erase the warning message currently displayed
Figure A-2: Sample Display Menu - Units with Z/S Valve or IZS Option installed

1 Only appears when warning messages are activated (see Section 6.2.2)
2 Press this key to cycle through list of active warning messages.
3 Press this key to clear/erase the warning message currently displayed
Figure A-3: Primary Setup Menu (Except iDAS)
Figure A-4: Primary Setup Menu (iDAS)

Only appears if ZS valve or IZS option is installed.
Sample

Enter setup pass: 818

CFG

ACAL

COMM

ID

INET

COM1 COM2

GTWY IP SNEL START STOP

<SET SET>

EDIT

MODE

BAUD RATE TEST PORT

PREV NEXT

PREV NEXT TEST

QUIET

OFF

ON

OFF

COMPUTER SECURITY HESSEN PROTOCOL E, 7, 1 RS-485 MULTIDROP PROTOCOL ENABLE MODEM ERROR CHECKING HARDWARE HANDSHAKE HARDWARE FIFO COMMAND PROMPT

300 1200 2400 4800 9600 19200 38400 57600 115200

Figure A-5: Secondary Setup Menu (COMM & VARS)

1 Only appears if Z/S valve or IZS option is installed.
2 Only appears on units with IZS option installed.
3 Only appears when the ENABLE INTERNET mode is enabled for either COM1 or COM2.

Go to DIAG MENU TREE (Fig A-8)
1 Only appears if a valve option is installed.
2 Only appears when the Ethernet card (option 63) is installed.
3 Although TCP PORT is editable regardless of the DHCP state, do not change the setting for this property unless instructed to by Teledyne Instruments Customer Service personnel.
4 HOST NAME is only editable when DHCP is ON.
5 INSTRUMENT IP, GATEWAY IP & SUBNET MASK are only editable when DHCP is OFF.

Figure A-6: Secondary Setup Menu (COMM Menu with Ethernet Card)
Figure A-7: Secondary Setup Menu - HESSEN Submenu

Notes:
1. Only appears if a valve is installed.
2. Only appears when the HESSEN mode is enabled for either COM1 or COM2.
Figure A-8: Secondary Setup Menu (DIAG)

2 Only relevant to analyzers with IZS options installed
APPENDIX A-2: Setup Variables For Serial I/O, Revision A.1

Table A-1: M6200E Setup Variables, Revision A.1

<table>
<thead>
<tr>
<th>SETUP VARIABLE</th>
<th>NUMERIC UNITS</th>
<th>DEFAULT VALUE</th>
<th>VALUE RANGE</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAS_HOLD_OFF</td>
<td>Minutes</td>
<td>15</td>
<td>0.5–20</td>
<td>Duration of DAS hold off period.</td>
</tr>
<tr>
<td>TPC_ENABLE</td>
<td>—</td>
<td>ON</td>
<td>OFF, ON</td>
<td>ON enables temperature and pressure compensation; OFF disables it.</td>
</tr>
<tr>
<td>RCELL_SET</td>
<td>ºC</td>
<td>50</td>
<td>30–70</td>
<td>Reaction cell temperature set point and warning limits.</td>
</tr>
<tr>
<td>IZS_SET</td>
<td>ºC</td>
<td>50</td>
<td>30–70</td>
<td>IZS temperature set point and warning limits.</td>
</tr>
<tr>
<td>DYN_ZERO</td>
<td>—</td>
<td>OFF</td>
<td>OFF, ON</td>
<td>ON enables contact closure dynamic zero; OFF disables it.</td>
</tr>
<tr>
<td>DYN_SPAN</td>
<td>—</td>
<td>OFF</td>
<td>OFF, ON</td>
<td>ON enables contact closure dynamic span; OFF disables it.</td>
</tr>
<tr>
<td>CONC_PRECISION</td>
<td>—</td>
<td>1</td>
<td>AUTO, 0, 1, 2, 3, 4</td>
<td>Number of digits to display to the right of the decimal point for concentrations on the display. Enclose value in double quotes (") when setting from the RS-232 interface.</td>
</tr>
<tr>
<td>CLOCK_ADJ</td>
<td>Sec./Day</td>
<td>0</td>
<td>-60–60</td>
<td>Time-of-day clock speed adjustment.</td>
</tr>
<tr>
<td>LANGUAGE_SELECT</td>
<td>—</td>
<td>ENGL</td>
<td>ENGL, SECD, EXTN</td>
<td>Selects the language to use for the user interface. Enclose value in double quotes (") when setting from the RS-232 interface.</td>
</tr>
<tr>
<td>MAINT_TIMEOUT</td>
<td>Hours</td>
<td>2</td>
<td>0.1–100</td>
<td>Time until automatically switching out of software-controlled maintenance mode.</td>
</tr>
<tr>
<td>MEASURE_PERIOD</td>
<td>Minutes</td>
<td>10</td>
<td>1–60</td>
<td>Length of time to measure each gas.</td>
</tr>
<tr>
<td>MEASURE_DELAY</td>
<td>Minutes</td>
<td>3</td>
<td>0.1–20</td>
<td>How long to defer sampling after switching streams.</td>
</tr>
<tr>
<td>CONV_TIME</td>
<td>—</td>
<td>33 MS</td>
<td>33 MS, 66 MS, 133 MS, 266 MS, 533 MS, 1 SEC, 2 SEC</td>
<td>Conversion time for PMT and UV detector channels. Enclose value in double quotes (") when setting from the RS-232 interface.</td>
</tr>
<tr>
<td>SETUP VARIABLE</td>
<td>NUMERIC UNITS</td>
<td>DEFAULT VALUE</td>
<td>VALUE RANGE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>DWELL_TIME</td>
<td>Seconds</td>
<td>1</td>
<td>0.1–10</td>
<td>Dwell time before taking each sample.</td>
</tr>
<tr>
<td>FILT_SIZE</td>
<td>Samples</td>
<td>240</td>
<td>1–480</td>
<td>Moving average filter size.</td>
</tr>
<tr>
<td>FILT_ASIZE</td>
<td>Samples</td>
<td>20</td>
<td>1–100</td>
<td>Moving average filter size in adaptive mode.</td>
</tr>
<tr>
<td>FILT_DELTA</td>
<td>PPB</td>
<td>20</td>
<td>1–100</td>
<td>Absolute change to trigger adaptive filter.</td>
</tr>
<tr>
<td>FILT_PCT</td>
<td>%</td>
<td>5</td>
<td>1–100</td>
<td>Percent change to trigger adaptive filter.</td>
</tr>
<tr>
<td>FILT_DELAY</td>
<td>Seconds</td>
<td>180</td>
<td>0–300</td>
<td>Delay before leaving adaptive filter mode.</td>
</tr>
<tr>
<td>FILT_ADAPT</td>
<td>—</td>
<td>ON, OFF</td>
<td>—</td>
<td>ON enables adaptive filter; OFF disables it.</td>
</tr>
<tr>
<td>DIL_FACTOR</td>
<td>—</td>
<td>1</td>
<td>0.1–1000</td>
<td>Dilution factor if dilution enabled with FACTORY_OPT variable.</td>
</tr>
<tr>
<td>USER_UNITS</td>
<td>—</td>
<td>PPB PPB, PPM, UGM, MGM</td>
<td></td>
<td>Concentration units for user interface. Enclose value in double quotes (") when setting from the RS-232 interface.</td>
</tr>
<tr>
<td>LAMP_CAL</td>
<td>mV</td>
<td>3500</td>
<td>1000–5000</td>
<td>Last calibrated UV lamp reading.</td>
</tr>
<tr>
<td>LAMP_GAIN</td>
<td>—</td>
<td>0.9</td>
<td>0.5–1.5</td>
<td>UV lamp compensation attenuation factor.</td>
</tr>
<tr>
<td>TEMPCO_GAIN</td>
<td>—</td>
<td>0.15</td>
<td>0.01–10</td>
<td>Temperature coefficient attenuation factor for pressure readings.</td>
</tr>
<tr>
<td>SLOPE_CONST</td>
<td>—</td>
<td>8</td>
<td>0.1–10</td>
<td>Constant to make visible slope close to 1.</td>
</tr>
<tr>
<td>DARK_ENABLE</td>
<td>—</td>
<td>ON, OFF</td>
<td>—</td>
<td>ON enables PMT/UV dark calibration; OFF disables it.</td>
</tr>
<tr>
<td>DARK_FREQ</td>
<td>Minutes</td>
<td>30</td>
<td>0.1–1440</td>
<td>Dark calibration period.</td>
</tr>
<tr>
<td>DARK_PRE_DWELL</td>
<td>Seconds</td>
<td>10</td>
<td>1–60</td>
<td>Dwell time after closing dark shutter or turning off lamp or selecting preamp range.</td>
</tr>
<tr>
<td>DARK_POST_DWELL</td>
<td>Seconds</td>
<td>10</td>
<td>1–180</td>
<td>Dwell time after opening dark shutter or turning on lamp.</td>
</tr>
<tr>
<td>DARK_SAMPLES</td>
<td>Samples</td>
<td>5</td>
<td>1–10</td>
<td>Number of dark samples to average.</td>
</tr>
<tr>
<td>DARK_FSIZE</td>
<td>Samples</td>
<td>2</td>
<td>1–100</td>
<td>Dark offset moving average filter size.</td>
</tr>
<tr>
<td>DARK_LIMIT</td>
<td>mV</td>
<td>200</td>
<td>0–1000</td>
<td>Maximum dark offset allowed.</td>
</tr>
<tr>
<td>SO2_SPAN1</td>
<td>Conc</td>
<td>400</td>
<td>0.1–50000</td>
<td>Target SO₂ concentration during span calibration of range 1.</td>
</tr>
<tr>
<td>SO2_SPAN2</td>
<td>Conc</td>
<td>400</td>
<td>0.1–50000</td>
<td>Target SO₂ concentration during span calibration of range 2.</td>
</tr>
<tr>
<td>SO2_SLOPE1</td>
<td>PPB/mV</td>
<td>1</td>
<td>0.25–4</td>
<td>SO₂ slope for range 1.</td>
</tr>
<tr>
<td>SO2_SLOPE2</td>
<td>PPB/mV</td>
<td>1</td>
<td>0.25–4</td>
<td>SO₂ slope for range 2.</td>
</tr>
<tr>
<td>SO2_OFFSET1</td>
<td>mV</td>
<td>0</td>
<td>-1500–1500</td>
<td>SO₂ offset for range 1.</td>
</tr>
<tr>
<td>SO2_OFFSET2</td>
<td>mV</td>
<td>0</td>
<td>-1500–1500</td>
<td>SO₂ offset for range 2.</td>
</tr>
<tr>
<td>SETUP VARIABLE</td>
<td>NUMERIC UNITS</td>
<td>DEFAULT VALUE</td>
<td>VALUE RANGE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>----------------------------</td>
<td>---</td>
</tr>
<tr>
<td>H2S_SPAN1</td>
<td>Conc</td>
<td>400</td>
<td>0.1–50000</td>
<td>Target H2S concentration during span calibration of range 1.</td>
</tr>
<tr>
<td>H2S_SPAN2</td>
<td>Conc</td>
<td>400</td>
<td>0.1–50000</td>
<td>Target H2S concentration during span calibration of range 2.</td>
</tr>
<tr>
<td>H2S_SLOPE1</td>
<td>PPB/mV</td>
<td>1</td>
<td>0.25–4</td>
<td>H2S slope for range 1.</td>
</tr>
<tr>
<td>H2S_SLOPE2</td>
<td>PPB/mV</td>
<td>1</td>
<td>0.25–4</td>
<td>H2S slope for range 2.</td>
</tr>
<tr>
<td>H2S_OFFSET1</td>
<td>mV</td>
<td>0</td>
<td>-1500–1500</td>
<td>H2S offset for range 1.</td>
</tr>
<tr>
<td>H2S_OFFSET2</td>
<td>mV</td>
<td>0</td>
<td>-1500–1500</td>
<td>H2S offset for range 2.</td>
</tr>
<tr>
<td>RANGE_MODE</td>
<td>—</td>
<td>SNGL</td>
<td>SNGL, IND, AUTO</td>
<td>Range control mode. Enclose value in double quotes (”) when setting from the RS-232 interface.</td>
</tr>
<tr>
<td>PHYS_RANGE1</td>
<td>PPM</td>
<td>2</td>
<td>0.1–2500</td>
<td>Low pre-amp range.</td>
</tr>
<tr>
<td>PHYS_RANGE2</td>
<td>PPM</td>
<td>20</td>
<td>0.1–2500</td>
<td>High pre-amp range.</td>
</tr>
<tr>
<td>CONC_RANGE1</td>
<td>Conc</td>
<td>500</td>
<td>0.1–50000</td>
<td>D/A concentration range 1.</td>
</tr>
<tr>
<td>CONC_RANGE2</td>
<td>Conc</td>
<td>500</td>
<td>0.1–50000</td>
<td>D/A concentration range 2.</td>
</tr>
<tr>
<td>SAMP_FLOW_SET</td>
<td>cc/m</td>
<td>700</td>
<td>0–1200</td>
<td>Sample flow set point for flow calculation and warning limits.</td>
</tr>
<tr>
<td>SAMP_FLOW_SLOPE</td>
<td>—</td>
<td>1</td>
<td>0.5–1.5</td>
<td>Sample flow slope correction factor (adjusted flow = measured flow x slope).</td>
</tr>
<tr>
<td>SAMP_PRESS_SET</td>
<td>*Hg</td>
<td>29.92</td>
<td>0–100</td>
<td>Sample pressure set point for pressure compensation and warning limits.</td>
</tr>
<tr>
<td>SAMP_PRESS_SLOPE</td>
<td>—</td>
<td>1</td>
<td>0.5–1.5</td>
<td>Sample pressure slope correction factor (adjusted pressure = measured pressure x slope).</td>
</tr>
<tr>
<td>CONV_TYPE</td>
<td>—</td>
<td>MOLY</td>
<td>NONE, MOLY</td>
<td>Converter type.</td>
</tr>
<tr>
<td>CONV_SET</td>
<td>ºC</td>
<td>315</td>
<td>0–350</td>
<td>Converter temperature set point and warning limits.</td>
</tr>
<tr>
<td>BOX_SET</td>
<td>ºC</td>
<td>30</td>
<td>5–60</td>
<td>Box temperature warning limits. Set point is not used.</td>
</tr>
<tr>
<td>PMT_SET</td>
<td>ºC</td>
<td>7</td>
<td>0–40</td>
<td>PMT temperature set point and warning limits.</td>
</tr>
<tr>
<td>SETUP VARIABLE</td>
<td>NUMERIC UNITS</td>
<td>DEFAULT VALUE</td>
<td>VALUE RANGE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RS232_MODE</td>
<td>BitFlag</td>
<td>0</td>
<td>0–65535</td>
<td>RS-232 COM1 mode flags. Add values to combine flags. 1 = quiet mode 2 = computer mode 4 = enable security 16 = enable Hessen protocol 5 32 = enable multi-drop 64 = enable modem 128 = ignore RS-232 line errors 256 = disable XON / XOFF support 512 = disable hardware FIFOs 1024 = enable RS-485 mode 2048 = even parity, 7 data bits, 1 stop bit 4096 = enable command prompt</td>
</tr>
<tr>
<td>BAUD_RATE</td>
<td>—</td>
<td>19200</td>
<td>300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200</td>
<td>RS-232 COM1 baud rate. Enclose value in double quotes (") when setting from the RS-232 interface.</td>
</tr>
<tr>
<td>MODEM_INIT</td>
<td>—</td>
<td>"AT Y0 &D0 &H0 &I0 S0=2 &B0 &N6 &M0 &E0 &Q1 &W0"</td>
<td>Any character in the allowed character set. Up to 100 characters long.</td>
<td>RS-232 COM1 modem initialization string. Sent verbatim plus carriage return to modem on power up or manually. Enclose value in double quotes (") when setting from the RS-232 interface.</td>
</tr>
<tr>
<td>RS232_MODE2</td>
<td>BitFlag</td>
<td>0</td>
<td>0–65535</td>
<td>RS-232 COM2 mode flags. (Same settings as RS232_MODE.)</td>
</tr>
<tr>
<td>BAUD_RATE2</td>
<td>—</td>
<td>19200</td>
<td>300, 1200, 2400, 4800, 9600, 19200, 38400, 57600, 115200</td>
<td>RS-232 COM2 baud rate. Enclose value in double quotes (") when setting from the RS-232 interface.</td>
</tr>
<tr>
<td>MODEM_INIT2</td>
<td>—</td>
<td>"AT Y0 &D0 &H0 &I0 S0=2"</td>
<td>Any character in the allowed character set. Up to 100 characters</td>
<td>RS-232 COM2 modem initialization string. Sent verbatim plus carriage return to modem on power up or manually. Enclose value in double quotes (") when setting from the RS-232 interface.</td>
</tr>
<tr>
<td>SETUP VARIABLE</td>
<td>NUMERIC UNITS</td>
<td>DEFAULT VALUE</td>
<td>VALUE RANGE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RS232_PASS</td>
<td>Password</td>
<td>940331</td>
<td>0–999999</td>
<td>RS-232 log on password.</td>
</tr>
<tr>
<td>MACHINE_ID</td>
<td>ID</td>
<td>101, 102, 108</td>
<td>0–9999</td>
<td>Unique ID number for instrument.</td>
</tr>
<tr>
<td>COMMAND_PROMPT</td>
<td></td>
<td>"Cmd> "</td>
<td></td>
<td>RS-232 interface command prompt. Displayed only if enabled with RS232_MODE variable. Enclose value in double quotes (") when setting from the RS-232 interface.</td>
</tr>
<tr>
<td>TEST_CHAN_ID</td>
<td></td>
<td>NONE</td>
<td></td>
<td>Diagnostic analog output ID. Enclose value in double quotes (") when setting from the RS-232 interface.</td>
</tr>
<tr>
<td>REMOTE_CAL_MODE</td>
<td></td>
<td>SO2-Low,</td>
<td></td>
<td>Gas and range to calibrate during contact-closure and Hessen calibration. Enclose value in double quotes (") when setting from the RS-232 interface.</td>
</tr>
<tr>
<td>HOLD_DAC_ON_CAL</td>
<td></td>
<td>OFF, ON</td>
<td></td>
<td>ON holds D/A outputs during zero/span calibration; OFF permits D/A outputs to change.</td>
</tr>
<tr>
<td>PASS_ENABLE</td>
<td></td>
<td>OFF, ON</td>
<td></td>
<td>ON enables passwords; OFF disables them.</td>
</tr>
<tr>
<td>STABIL_GAS</td>
<td></td>
<td>SO2, H2S</td>
<td></td>
<td>Gas to use to measure concentration stability. Enclose value in double quotes (") when setting from the RS-232 interface.</td>
</tr>
<tr>
<td>STABIL_FREQ</td>
<td>Seconds</td>
<td>10</td>
<td>1–300</td>
<td>Stability measurement sampling period.</td>
</tr>
<tr>
<td>STABIL_SAMPLES</td>
<td>Samples</td>
<td>25</td>
<td>2–40</td>
<td>Number of samples in concentration stability reading.</td>
</tr>
<tr>
<td>RCELL_CYCLE</td>
<td>Seconds</td>
<td>2</td>
<td>0.5–30</td>
<td>Reaction cell temperature control</td>
</tr>
<tr>
<td>SETUP VARIABLE</td>
<td>NUMERIC UNITS</td>
<td>DEFAULT VALUE</td>
<td>VALUE RANGE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>---------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--</td>
</tr>
<tr>
<td>RCELL_PROP</td>
<td>$1/°C$</td>
<td>0.3</td>
<td>0–10</td>
<td>Reaction cell temperature PID proportional coefficient.</td>
</tr>
<tr>
<td>RCELL_INTG</td>
<td>—</td>
<td>0.005</td>
<td>0–10</td>
<td>Reaction cell temperature PID integral coefficient.</td>
</tr>
<tr>
<td>RCELL_DERIV</td>
<td>—</td>
<td>0.5</td>
<td>0–10</td>
<td>Reaction cell temperature PID derivative coefficient.</td>
</tr>
<tr>
<td>IZS_CYCLE</td>
<td>Seconds</td>
<td>2</td>
<td>0.5–30</td>
<td>IZS temperature control cycle period.</td>
</tr>
<tr>
<td>IZS_PROP</td>
<td>$1/°C$</td>
<td>1</td>
<td>0–10</td>
<td>IZS temperature PID proportional coefficient.</td>
</tr>
<tr>
<td>IZS_INTEG</td>
<td>—</td>
<td>0.03</td>
<td>0–10</td>
<td>IZS temperature PID integral coefficient.</td>
</tr>
<tr>
<td>IZS_DERIV</td>
<td>—</td>
<td>0</td>
<td>0–10</td>
<td>IZS temperature PID derivative coefficient.</td>
</tr>
<tr>
<td>HVPS_SET</td>
<td>Volts</td>
<td>650</td>
<td>0–2000</td>
<td>High voltage power supply warning limits. Set point is not used.</td>
</tr>
<tr>
<td>DETECTOR_LIMIT</td>
<td>mV</td>
<td>1000</td>
<td>0–5000</td>
<td>UV lamp and PMT detector warning limits. Set point is not used.</td>
</tr>
<tr>
<td>SERIAL_NUMBER</td>
<td>—</td>
<td>"00000 000"</td>
<td></td>
<td>Unique serial number for instrument. Enclose value in double quotes (" ") when setting from the RS-232 interface.</td>
</tr>
<tr>
<td>DISP_INTENSITY</td>
<td>—</td>
<td>HIGH</td>
<td>HIGH, MED, LOW, DIM</td>
<td>Front panel display intensity. Enclose value in double quotes (" ") when setting from the RS-232 interface.</td>
</tr>
<tr>
<td>I2C_RESET_ENABLE</td>
<td>—</td>
<td>ON</td>
<td>OFF, ON</td>
<td>I^2C bus automatic reset enable.</td>
</tr>
<tr>
<td>SETUP VARIABLE</td>
<td>NUMERIC UNITS</td>
<td>DEFAULT VALUE</td>
<td>VALUE RANGE</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
</tbody>
</table>
| CLOCK_FORMAT | | "TIME= %H:%M: %S" | Any character in the allowed character set. Up to 100 characters long. | Time-of-day clock format flags. Enclose value in double quotes (") when setting from the RS-232 interface.
"%a" = Abbreviated weekday name.
"%b" = Abbreviated month name.
"%d" = Day of month as decimal number (01 – 31).
"%H" = Hour in 24-hour format (00 – 23).
"%I" = Hour in 12-hour format (01 – 12).
"%j" = Day of year as decimal number (001 – 366).
"%m" = Month as decimal number (01 – 12).
"%M" = Minute as decimal number (00 – 59).
"%p" = A.M./P.M. indicator for 12-hour clock.
"%S" = Second as decimal number (00 – 59).
"%w" = Weekday as decimal number (0 – 6; Sunday is 0).
"%y" = Year without century, as decimal number (00 – 99).
"%Y" = Year with century, as decimal number.
"%%" = Percent sign. |
| FACTORY_OPT | BitFlag | 0 | 0–65535 | Factory option flags. Add values to combine flags.
1 = enable dilution factor
2 = zero/span valves installed
4 = IZS installed (implies zero/span valves installed)
16 = display units in concentration field
32 = enable software-controlled maintenance mode
128 = enable switch-controlled maintenance mode
2048 = enable Internet option |

5 Must power-cycle instrument for these options to fully take effect.
<table>
<thead>
<tr>
<th>NAME</th>
<th>MESSAGE TEXT</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSYSRES</td>
<td>SYSTEM RESET</td>
<td>Instrument was power-cycled or the CPU was reset.</td>
</tr>
<tr>
<td>WDATAINIT</td>
<td>DATA INITIALIZED</td>
<td>Data storage was erased.</td>
</tr>
<tr>
<td>WCONFIGINIT</td>
<td>CONFIG INITIALIZED</td>
<td>Configuration storage was reset to factory configuration or erased.</td>
</tr>
<tr>
<td>WPMT</td>
<td>PMT DET WARNING</td>
<td>PMT detector outside of warning limits specified by DETECTOR_LIMIT variable.</td>
</tr>
<tr>
<td>WUVLAMP</td>
<td>UV LAMP WARNING</td>
<td>UV lamp reading outside of warning limits specified by DETECTOR_LIMIT variable.</td>
</tr>
<tr>
<td>WSAMPFLOW</td>
<td>SAMPLE FLOW WARN</td>
<td>Sample flow outside of warning limits specified by SAMPL_FLOW_SET variable.</td>
</tr>
<tr>
<td>WSAMPPRESS</td>
<td>SAMPLE PRESS WARN</td>
<td>Sample pressure outside of warning limits specified by SAMPL_PRESS_SET variable.</td>
</tr>
<tr>
<td>WVACPRESS</td>
<td>VACUUM PRESS WARN</td>
<td>Vacuum pressure outside of warning limits specified by VAC_PRESS_SET variable.</td>
</tr>
<tr>
<td>WCONVTEMP</td>
<td>CONV TEMP WARNING</td>
<td>Converter temperature outside of warning limits specified by CONV_SET variable.</td>
</tr>
<tr>
<td>WBOXTEMP</td>
<td>BOX TEMP WARNING</td>
<td>Chassis temperature outside of warning limits specified by BOX_SET variable.</td>
</tr>
<tr>
<td>WRCELLTEMP</td>
<td>RCELL TEMP WARNING</td>
<td>Sample chamber temperature outside of warning limits specified by RCELL_SET variable.</td>
</tr>
<tr>
<td>WIZSTEMP</td>
<td>IZS TEMP WARNING</td>
<td>IZS temperature outside of warning limits specified by IZS_SET variable.</td>
</tr>
<tr>
<td>WPMTTEMP</td>
<td>PMT TEMP WARNING</td>
<td>PMT temperature outside of warning limits specified by PMT_SET variable.</td>
</tr>
<tr>
<td>WDARKCAL</td>
<td>DARK CAL WARNING</td>
<td>Dark offset above limit specified by DARK_LIMIT variable.</td>
</tr>
<tr>
<td>WHVPS</td>
<td>HVPS WARNING</td>
<td>High voltage power supply output outside of warning limits specified by HVPS_SET variable.</td>
</tr>
<tr>
<td>WDYNZERO</td>
<td>CANNOT DYN ZERO</td>
<td>Contact closure zero calibration failed while DYN_ZERO was set to ON.</td>
</tr>
<tr>
<td>WDYNSPAN</td>
<td>CANNOT DYN SPAN</td>
<td>Contact closure span calibration failed while DYN_SPAN was set to ON.</td>
</tr>
<tr>
<td>WREARBOARD</td>
<td>REAR BOARD NOT DET</td>
<td>Rear board was not detected during power up.</td>
</tr>
<tr>
<td>WRELAYBOARD</td>
<td>RELAY BOARD WARN</td>
<td>Firmware is unable to communicate with the relay board.</td>
</tr>
<tr>
<td>WFRONTPANEL</td>
<td>FRONT PANELwarn</td>
<td>Firmware is unable to communicate with the front panel.</td>
</tr>
<tr>
<td>WANALOGCAL</td>
<td>ANALOG CAL WARNING</td>
<td>The A/D or at least one D/A channel has not been calibrated.</td>
</tr>
<tr>
<td>TEST Function</td>
<td>Message Text</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>RANGE</td>
<td>RANGE=500.0 PPB (^3)</td>
<td>D/A range in single or auto-range modes.</td>
</tr>
<tr>
<td>RANGE1</td>
<td>RANGE1=500.0 PPB (^3)</td>
<td>D/A #1 range in independent range mode.</td>
</tr>
<tr>
<td>RANGE2</td>
<td>RANGE2=500.0 PPB (^3)</td>
<td>D/A #2 range in independent range mode.</td>
</tr>
<tr>
<td>STABILITY</td>
<td>H2S STB(^1)=0.0 PPB (^3),4</td>
<td>Concentration stability (standard deviation based on setting of STABIL_FREQ and STABIL_SAMPLES).</td>
</tr>
<tr>
<td>RESPONSE</td>
<td>RSP=1.11(0.00) SEC</td>
<td>Instrument response. Length of each signal processing loop. Time in parenthesis is standard deviation.</td>
</tr>
<tr>
<td>VACUUM</td>
<td>VAC=9.1 IN-HG-A</td>
<td>Vacuum pressure.</td>
</tr>
<tr>
<td>SAMPPRESS</td>
<td>PRES=29.9 IN-HG-A</td>
<td>Sample pressure.</td>
</tr>
<tr>
<td>SAMPPFLOW</td>
<td>SAMP FL=700 CC/M</td>
<td>Sample flow rate.</td>
</tr>
<tr>
<td>PMTDET</td>
<td>PMT=762.5 MV</td>
<td>Raw PMT reading.</td>
</tr>
<tr>
<td>NORMPMTDET</td>
<td>NORM PMT=742.9 MV</td>
<td>PMT reading normalized for temperature, pressure, auto-zero offset, but not range.</td>
</tr>
<tr>
<td>UVDET</td>
<td>UV LAMP=3457.6 MV</td>
<td>UV lamp reading.</td>
</tr>
<tr>
<td>LAMPRATIO</td>
<td>LAMP RATIO=100.0 %</td>
<td>UV lamp ratio of current reading divided by calibrated reading.</td>
</tr>
<tr>
<td>STRAYLIGHT</td>
<td>STR. LGT=0.1 PPB</td>
<td>Stray light offset.</td>
</tr>
<tr>
<td>DARKPMT</td>
<td>DRK PMT=19.6 MV</td>
<td>PMT dark offset.</td>
</tr>
<tr>
<td>DARKLAMP</td>
<td>DRK LMP=42.4 MV</td>
<td>UV lamp dark offset.</td>
</tr>
<tr>
<td>SLOPE</td>
<td>H2S SLOPE(^4)=1.061</td>
<td>Slope for current range, computed during zero/span calibration.</td>
</tr>
<tr>
<td>OFFSET</td>
<td>H2S OFFS(^4)=250.0 MV</td>
<td>Offset for current range, computed during zero/span calibration.</td>
</tr>
<tr>
<td>HVPS</td>
<td>HVPS=650 VOLTS</td>
<td>High voltage power supply output.</td>
</tr>
<tr>
<td>RCELLDUTY</td>
<td>RCELL ON=0.00 SEC</td>
<td>Sample chamber temperature control duty cycle.</td>
</tr>
<tr>
<td>RCELLTEMP</td>
<td>RCELL TEMP=52.1 C</td>
<td>Sample chamber temperature.</td>
</tr>
<tr>
<td>BOXTEMP</td>
<td>BOX TEMP=35.5 C</td>
<td>Internal chassis temperature.</td>
</tr>
<tr>
<td>PMTTEMP</td>
<td>PMT TEMP=7.0 C</td>
<td>PMT temperature.</td>
</tr>
<tr>
<td>IZSDUTY</td>
<td>IZS ON=0.00 SEC</td>
<td>IZS temperature control duty cycle.</td>
</tr>
<tr>
<td>IZSTEMP</td>
<td>IZS TEMP=52.2 C</td>
<td>IZS temperature.</td>
</tr>
<tr>
<td>CONVTEMP</td>
<td>CONV TEMP=315.0 C</td>
<td>H₂S → SO₂ Converter temperature.</td>
</tr>
<tr>
<td>H₂S</td>
<td>H₂S=261.4 PPB</td>
<td>H₂S concentration for current range.</td>
</tr>
<tr>
<td>TESTCHAN</td>
<td>TEST=3721.1 MV</td>
<td>Value output to TEST_OUTPUT analog output, selected with TEST_CHAN_ID variable.</td>
</tr>
<tr>
<td>CLOCKTIME</td>
<td>TIME=10:38:27</td>
<td>Current instrument time of day clock.</td>
</tr>
</tbody>
</table>

\(^1\) The name is used to request a message via the RS-232 interface, as in "T BOXTEMP".

\(^2\) Engineering software.

\(^3\) Current instrument units.

\(^4\) Shown as they appear when analyzer is in H₂S mode. In SO₂ mode appear as SO₂ STB, SO₂ OFFS & SO₂ SLOPE. In multigas mode, both versions appear.

\(^5\) M6200EH
APPENDIX A-4: M6200E Signal I/O Definitions, Revision A.1

Table A-4: M6200E Signal I/O Definitions, Revision A.1

<table>
<thead>
<tr>
<th>SIGNAL NAME</th>
<th>BIT OR CHANNEL NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal outputs, U8, J108, pins 1–8 = bits 0–7, default I/O address 322 hex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEC_TEST</td>
<td>0</td>
<td>1 = electrical test on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = off</td>
</tr>
<tr>
<td>OPTIC_TEST</td>
<td>1</td>
<td>1 = optic test on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = off</td>
</tr>
<tr>
<td>PREAMP_RANGE_HI</td>
<td>2</td>
<td>1 = select high preamp range</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = select low range</td>
</tr>
<tr>
<td></td>
<td>3–5</td>
<td>Spare</td>
</tr>
<tr>
<td>I2C_RESET</td>
<td>6</td>
<td>1 = reset I2C peripherals</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = normal</td>
</tr>
<tr>
<td>I2C_DRV_RST</td>
<td>7</td>
<td>0 = hardware reset 8584 chip</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = normal</td>
</tr>
<tr>
<td>Control inputs, U11, J1004, pins 1–6 = bits 0–5, default I/O address 321 hex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EXT_ZERO_CAL</td>
<td>0</td>
<td>0 = go into zero calibration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = exit zero calibration</td>
</tr>
<tr>
<td>EXT_SPAN_CAL</td>
<td>1</td>
<td>0 = go into span calibration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = exit span calibration</td>
</tr>
<tr>
<td>EXT_LOW_SPAN</td>
<td>2</td>
<td>0 = go into low span calibration</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = exit low span calibration</td>
</tr>
<tr>
<td></td>
<td>3–5</td>
<td>Spare</td>
</tr>
<tr>
<td>Control inputs, U14, J1006, pins 1–6 = bits 0–5, default I/O address 325 hex</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0–5</td>
<td>Spare</td>
</tr>
<tr>
<td></td>
<td>6–7</td>
<td>Always 1</td>
</tr>
<tr>
<td>Control outputs, U17, J1008, pins 1–8 = bits 0–7, default I/O address 321 hex</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0–7</td>
<td>Spare</td>
</tr>
<tr>
<td>Control outputs, U21, J1008, pins 9–12 = bits 0–3, default I/O address 325 hex</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0–3</td>
<td>Spare</td>
</tr>
<tr>
<td>Alarm outputs, U21, J1009, pins 1–12 = bits 4–7, default I/O address 325 hex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_SYSTEM_OK2</td>
<td>4</td>
<td>1 = system OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0 = any alarm condition</td>
</tr>
<tr>
<td></td>
<td>5–7</td>
<td>Spare</td>
</tr>
<tr>
<td>A status outputs, U24, J1017, pins 1–8 = bits 0–7, default I/O address 323 hex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST_SYSTEM_OK</td>
<td>0</td>
<td>0 = system OK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = any alarm condition</td>
</tr>
<tr>
<td>ST_CONC_VALID</td>
<td>1</td>
<td>0 = conc. valid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = hold off or other conditions</td>
</tr>
<tr>
<td>ST_HIGH_RANGE</td>
<td>2</td>
<td>0 = high auto-range in use</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = low auto-range</td>
</tr>
<tr>
<td>SIGNAL NAME</td>
<td>BIT OR CHANNEL NUMBER</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>---------------------</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>ST_ZERO_CAL</td>
<td>3</td>
<td>0 = in zero calibration 1 = not in zero</td>
</tr>
<tr>
<td>ST_SPAN_CAL</td>
<td>4</td>
<td>0 = in span calibration 1 = not in span</td>
</tr>
<tr>
<td>ST_DIAG_MODE</td>
<td>5</td>
<td>0 = in diagnostic mode 1 = not in diagnostic mode</td>
</tr>
<tr>
<td>ST_LOW_SPAN_CAL</td>
<td>6</td>
<td>0 = in low span calibration 1 = not in low span</td>
</tr>
<tr>
<td>ST_LAMP_ALARM</td>
<td>0</td>
<td>0 = lamp intensity low 1 = lamp intensity OK</td>
</tr>
<tr>
<td>ST_DARK_CAL_ALARM</td>
<td>1</td>
<td>0 = dark cal. warning 1 = dark cal. OK</td>
</tr>
<tr>
<td>ST_FLOW_ALARM</td>
<td>2</td>
<td>0 = any flow alarm 1 = all flows OK</td>
</tr>
<tr>
<td>ST_PRESS_ALARM</td>
<td>3</td>
<td>0 = any pressure alarm 1 = all pressures OK</td>
</tr>
<tr>
<td>ST_TEMP_ALARM</td>
<td>4</td>
<td>0 = any temperature alarm 1 = all temperatures OK</td>
</tr>
<tr>
<td>ST_HVPS_ALARM</td>
<td>5</td>
<td>0 = HVPS alarm 1 = HVPS OK</td>
</tr>
<tr>
<td>MAINT_MODE</td>
<td>5 (input)</td>
<td>0 = maintenance mode 1 = normal mode</td>
</tr>
<tr>
<td>LANG2_SELECT</td>
<td>6 (input)</td>
<td>0 = select second language 1 = select first language (English)</td>
</tr>
<tr>
<td>SAMPLE_LED</td>
<td>8 (output)</td>
<td>0 = sample LED on 1 = off</td>
</tr>
<tr>
<td>CAL_LED</td>
<td>9 (output)</td>
<td>0 = cal. LED on 1 = off</td>
</tr>
<tr>
<td>FAULT_LED</td>
<td>10 (output)</td>
<td>0 = fault LED on 1 = off</td>
</tr>
<tr>
<td>AUDIBLE_BEEPER</td>
<td>14 (output)</td>
<td>0 = beeper on (for diagnostic testing only) 1 = off</td>
</tr>
</tbody>
</table>

B status outputs, U27, J1018, pins 1–8 = bits 0–7, default I/O address 324 hex

<table>
<thead>
<tr>
<th>SIGNAL NAME</th>
<th>BIT OR CHANNEL NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST_FLOW_ALARM</td>
<td>2</td>
<td>0 = any flow alarm 1 = all flows OK</td>
</tr>
<tr>
<td>ST_PRESS_ALARM</td>
<td>3</td>
<td>0 = any pressure alarm 1 = all pressures OK</td>
</tr>
<tr>
<td>ST_TEMP_ALARM</td>
<td>4</td>
<td>0 = any temperature alarm 1 = all temperatures OK</td>
</tr>
<tr>
<td>ST_HVPS_ALARM</td>
<td>5</td>
<td>0 = HVPS alarm 1 = HVPS OK</td>
</tr>
<tr>
<td>6–7 Spare</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Front panel I²C keyboard, default I²C address 4E hex

<table>
<thead>
<tr>
<th>SIGNAL NAME</th>
<th>BIT OR CHANNEL NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAINT_MODE</td>
<td>5 (input)</td>
<td>0 = maintenance mode 1 = normal mode</td>
</tr>
<tr>
<td>LANG2_SELECT</td>
<td>6 (input)</td>
<td>0 = select second language 1 = select first language (English)</td>
</tr>
<tr>
<td>SAMPLE_LED</td>
<td>8 (output)</td>
<td>0 = sample LED on 1 = off</td>
</tr>
<tr>
<td>CAL_LED</td>
<td>9 (output)</td>
<td>0 = cal. LED on 1 = off</td>
</tr>
<tr>
<td>FAULT_LED</td>
<td>10 (output)</td>
<td>0 = fault LED on 1 = off</td>
</tr>
<tr>
<td>AUDIBLE_BEEPER</td>
<td>14 (output)</td>
<td>0 = beeper on (for diagnostic testing only) 1 = off</td>
</tr>
</tbody>
</table>

Relay board digital output (PCF8575), default I²C address 44 hex

<table>
<thead>
<tr>
<th>SIGNAL NAME</th>
<th>BIT OR CHANNEL NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>RELAY_WATCHDOG</td>
<td>0</td>
<td>Alternate between 0 and 1 at least every 5 seconds to keep relay board active</td>
</tr>
<tr>
<td>RCELL_HEATER</td>
<td>1</td>
<td>0 = sample chamber heater on 1 = off</td>
</tr>
<tr>
<td>SIGNAL NAME</td>
<td>BIT OR CHANNEL NUMBER</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
<td>--</td>
</tr>
<tr>
<td>CONV_HEATER</td>
<td>2</td>
<td>0 = converter cell heater on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = off</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>Spare</td>
</tr>
<tr>
<td>LAMP_POWER</td>
<td>3</td>
<td>0 = turn lamp power on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = off</td>
</tr>
<tr>
<td>IZS_HEATER</td>
<td>4</td>
<td>0 = IZS heater on</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = off</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>Spare</td>
</tr>
<tr>
<td>CAL_VALVE</td>
<td>6</td>
<td>0 = let cal. gas in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = let sample gas in</td>
</tr>
<tr>
<td>SPAN_VALVE</td>
<td>7</td>
<td>0 = let span gas in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = let zero gas in</td>
</tr>
<tr>
<td>LOW_SPAN_VALVE</td>
<td>8</td>
<td>0 = let low span gas in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = let sample gas in</td>
</tr>
<tr>
<td>ZERO_VALVE</td>
<td>9</td>
<td>0 = let zero gas in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = let sample gas in</td>
</tr>
<tr>
<td>DARK_SHUTTER</td>
<td>10</td>
<td>0 = close dark shutter</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 = open</td>
</tr>
<tr>
<td></td>
<td>11-15</td>
<td>Spare</td>
</tr>
</tbody>
</table>

Rear board primary MUX analog inputs

<table>
<thead>
<tr>
<th>SIGNAL NAME</th>
<th>BIT OR CHANNEL NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMT_SIGNAL</td>
<td>0</td>
<td>PMT detector</td>
</tr>
<tr>
<td>HVPS_VOLTAGE</td>
<td>1</td>
<td>HV power supply output</td>
</tr>
<tr>
<td>PMT_TEMP</td>
<td>2</td>
<td>PMT temperature</td>
</tr>
<tr>
<td>UVLAMP_SIGNAL</td>
<td>3</td>
<td>UV lamp intensity</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>Temperature MUX</td>
</tr>
<tr>
<td></td>
<td>5-6</td>
<td>Spare</td>
</tr>
<tr>
<td>SAMPLE_PRESSURE</td>
<td>7</td>
<td>Sample pressure</td>
</tr>
<tr>
<td>TEST_INPUT_8</td>
<td>8</td>
<td>Diagnostic test input</td>
</tr>
<tr>
<td>REF_4096_MV</td>
<td>9</td>
<td>4.096V reference from MAX6241</td>
</tr>
<tr>
<td>SAMPLE_FLOW</td>
<td>10</td>
<td>Sample flow rate</td>
</tr>
<tr>
<td>VACUUM_PRESSURE</td>
<td>10</td>
<td>Vacuum pressure</td>
</tr>
<tr>
<td>TEST_INPUT_11</td>
<td>11</td>
<td>Diagnostic test input</td>
</tr>
<tr>
<td></td>
<td>12-13</td>
<td>Spare (thermocouple input?)</td>
</tr>
<tr>
<td>REF_GND</td>
<td>14</td>
<td>DAC MUX</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>Ground MUX</td>
</tr>
</tbody>
</table>

Rear board temperature MUX analog inputs

<table>
<thead>
<tr>
<th>SIGNAL NAME</th>
<th>BIT OR CHANNEL NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>BOX_TEMP</td>
<td>0</td>
<td>Internal box temperature</td>
</tr>
<tr>
<td>RCELL_TEMP</td>
<td>1</td>
<td>Sample chamber temperature</td>
</tr>
<tr>
<td>IZS_TEMP</td>
<td>2</td>
<td>IZS temperature</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Spare</td>
</tr>
<tr>
<td>TEMP_INPUT_4</td>
<td>4</td>
<td>Diagnostic temperature input</td>
</tr>
<tr>
<td>SIGNAL NAME</td>
<td>BIT OR CHANNEL NUMBER</td>
<td>DESCRIPTION</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>TEMP_INPUT_5</td>
<td>5</td>
<td>Diagnostic temperature input</td>
</tr>
<tr>
<td>TEMP_INPUT_6</td>
<td>6</td>
<td>Diagnostic temperature input</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>Spare</td>
</tr>
</tbody>
</table>

Rear board DAC MUX analog inputs

<table>
<thead>
<tr>
<th>SIGNAL NAME</th>
<th>BIT OR CHANNEL NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAC_CHAN_0</td>
<td>0</td>
<td>DAC channel 0 loopback</td>
</tr>
<tr>
<td>DAC_CHAN_1</td>
<td>1</td>
<td>DAC channel 1 loopback</td>
</tr>
<tr>
<td>DAC_CHAN_2</td>
<td>2</td>
<td>DAC channel 2 loopback</td>
</tr>
<tr>
<td>DAC_CHAN_3</td>
<td>3</td>
<td>DAC channel 3 loopback</td>
</tr>
</tbody>
</table>

Rear board analog outputs

<table>
<thead>
<tr>
<th>SIGNAL NAME</th>
<th>BIT OR CHANNEL NUMBER</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONC_OUT_1</td>
<td>0</td>
<td>Concentration output #1</td>
</tr>
<tr>
<td>CONC_OUT_2</td>
<td>1</td>
<td>Concentration output #2</td>
</tr>
<tr>
<td>TEST_OUTPUT</td>
<td>2</td>
<td>Test measurement output</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>Spare</td>
</tr>
</tbody>
</table>

1 Optional.
2 M6200EH.
3 M6200EU.
4 M6200EF.
<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATIMER</td>
<td>Automatic timer expired</td>
</tr>
<tr>
<td>EXITZR</td>
<td>Exit zero calibration mode</td>
</tr>
<tr>
<td>EXITHS</td>
<td>Exit high span calibration mode</td>
</tr>
<tr>
<td>EXITMP</td>
<td>Exit multi-point calibration mode</td>
</tr>
<tr>
<td>SLPCHG</td>
<td>Slope and offset recalculated</td>
</tr>
<tr>
<td>EXITDG</td>
<td>Exit diagnostic mode</td>
</tr>
<tr>
<td>PMTDTW</td>
<td>PMT detector warning</td>
</tr>
<tr>
<td>UVLMPW</td>
<td>UV lamp warning</td>
</tr>
<tr>
<td>DRKCLW</td>
<td>Dark calibration warning</td>
</tr>
<tr>
<td>RCTMPW</td>
<td>Reaction cell temperature warning</td>
</tr>
<tr>
<td>IZTMPW</td>
<td>IZS temperature warning</td>
</tr>
<tr>
<td>PTEMPW</td>
<td>PMT temperature warning</td>
</tr>
<tr>
<td>CTEMPW</td>
<td>Converter temperature warning</td>
</tr>
<tr>
<td>SFLOWW</td>
<td>Sample flow warning</td>
</tr>
<tr>
<td>SPRESW</td>
<td>Sample pressure warning</td>
</tr>
<tr>
<td>BTEMPW</td>
<td>Box temperature warning</td>
</tr>
<tr>
<td>HVPSW</td>
<td>High voltage power supply warning</td>
</tr>
</tbody>
</table>
Table A-6: M6200E iDAS Functions, Revision A.1

<table>
<thead>
<tr>
<th>NAME</th>
<th>DESCRIPTION</th>
<th>UNITS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PMTDET</td>
<td>PMT detector reading</td>
<td>mV</td>
</tr>
<tr>
<td>UVDET</td>
<td>UV lamp intensity reading</td>
<td>mV</td>
</tr>
<tr>
<td>LAMPR</td>
<td>UV lamp ratio of calibrated intensity</td>
<td>%</td>
</tr>
<tr>
<td>DRKPMT</td>
<td>PMT electrical offset</td>
<td>mV</td>
</tr>
<tr>
<td>DARKUV</td>
<td>UV lamp electrical offset</td>
<td>mV</td>
</tr>
<tr>
<td>S2SLP1</td>
<td>SO₂ slope for range #1</td>
<td>PPB/mV</td>
</tr>
<tr>
<td>S2SLP2</td>
<td>SO₂ slope for range #2</td>
<td>PPB/mV</td>
</tr>
<tr>
<td>H2SLP1 or TRSLP1</td>
<td>H₂S/TRS slope for range #1</td>
<td>PPB/mV</td>
</tr>
<tr>
<td>H2SLP2 or TRSLP2</td>
<td>H₂S/TRS slope for range #2</td>
<td>PPB/mV</td>
</tr>
<tr>
<td>S2OFS1</td>
<td>SO₂ offset for range #1</td>
<td>mV</td>
</tr>
<tr>
<td>S2OFS2</td>
<td>SO₂ offset for range #2</td>
<td>mV</td>
</tr>
<tr>
<td>H2OFS1 or TROFS1</td>
<td>H₂S/TRS offset for range #1</td>
<td>mV</td>
</tr>
<tr>
<td>H2OFS2 or TROFS2</td>
<td>H₂S/TRS offset for range #2</td>
<td>mV</td>
</tr>
<tr>
<td>S2ZSC1</td>
<td>SO₂ concentration for range #1 during zero/span calibration, just before computing new slope and offset</td>
<td>PPB</td>
</tr>
<tr>
<td>S2ZSC2</td>
<td>SO₂ concentration for range #2 during zero/span calibration, just before computing new slope and offset</td>
<td>PPB</td>
</tr>
<tr>
<td>H2ZSC1 or TRZSC1</td>
<td>H₂S/TRS concentration for range #1 during zero/span calibration, just before computing new slope and offset</td>
<td>PPB</td>
</tr>
<tr>
<td>H2ZSC2 or TRZSC2</td>
<td>H₂S/TRS concentration for range #2 during zero/span calibration, just before computing new slope and offset</td>
<td>PPB</td>
</tr>
<tr>
<td>S2CNC1</td>
<td>SO₂ concentration for range #1</td>
<td>PPB</td>
</tr>
<tr>
<td>S2CNC2</td>
<td>SO₂ concentration for range #2</td>
<td>PPB</td>
</tr>
<tr>
<td>H2CNC1 or TRCNC1</td>
<td>H₂S/TRS concentration for range #1</td>
<td>PPB</td>
</tr>
<tr>
<td>H2CNC2 or TRCNC2</td>
<td>H₂S/TRS concentration for range #2</td>
<td>PPB</td>
</tr>
<tr>
<td>STABIL</td>
<td>SO₂ or H₂S/TRS concentration stability (select with STABIL_GAS variable)</td>
<td>PPB</td>
</tr>
<tr>
<td>STRLGT</td>
<td>Stray light reading</td>
<td>PPB</td>
</tr>
<tr>
<td>RCTEMP</td>
<td>Reaction cell temperature</td>
<td>°C</td>
</tr>
<tr>
<td>I2STM</td>
<td>I2S temperature</td>
<td>°C</td>
</tr>
<tr>
<td>PMTTEMP</td>
<td>PMT temperature</td>
<td>°C</td>
</tr>
<tr>
<td>CNVTMP</td>
<td>Converter temperature</td>
<td>°C</td>
</tr>
<tr>
<td>SMPFLW</td>
<td>Sample flow</td>
<td>cc/m</td>
</tr>
<tr>
<td>SMPPRS</td>
<td>Sample pressure</td>
<td>°Hg</td>
</tr>
<tr>
<td>BOXTMP</td>
<td>Internal box temperature</td>
<td>°C</td>
</tr>
<tr>
<td>HVPS</td>
<td>High voltage power supply output</td>
<td>Volts</td>
</tr>
<tr>
<td>TEST8</td>
<td>Diagnostic test input (TEST_INPUT_8)</td>
<td>mV</td>
</tr>
<tr>
<td>TEST11</td>
<td>Diagnostic test input (TEST_INPUT_11)</td>
<td>mV</td>
</tr>
<tr>
<td>TEMP4</td>
<td>Diagnostic temperature input (TEMP_INPUT_4)</td>
<td>°C</td>
</tr>
<tr>
<td>TEMP5</td>
<td>Diagnostic temperature input (TEMP_INPUT_5)</td>
<td>°C</td>
</tr>
<tr>
<td>TEMP6</td>
<td>Diagnostic temperature input (TEMP_INPUT_6)</td>
<td>°C</td>
</tr>
<tr>
<td>REFGND</td>
<td>Ground reference (REF_GND)</td>
<td>mV</td>
</tr>
<tr>
<td>RF4096</td>
<td>4096 mV reference (REF_4096_MV)</td>
<td>mV</td>
</tr>
</tbody>
</table>
APPENDIX A-6: Terminal Command Designators, Revision A.1

<table>
<thead>
<tr>
<th>COMMAND</th>
<th>ADDITIONAL COMMAND SYNTAX</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>? [ID]</td>
<td></td>
<td>Display help screen and commands list</td>
</tr>
<tr>
<td>LOGON [ID]</td>
<td>password</td>
<td>Establish connection to instrument</td>
</tr>
<tr>
<td>LOGOFF [ID]</td>
<td></td>
<td>Terminate connection to instrument</td>
</tr>
<tr>
<td>T [ID]</td>
<td>SET ALL</td>
<td>name</td>
</tr>
<tr>
<td></td>
<td>LIST [ALL</td>
<td>name</td>
</tr>
<tr>
<td></td>
<td>name</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLEAR ALL</td>
<td>name</td>
</tr>
<tr>
<td>W [ID]</td>
<td>SET ALL</td>
<td>name</td>
</tr>
<tr>
<td></td>
<td>LIST [ALL</td>
<td>name</td>
</tr>
<tr>
<td></td>
<td>name</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CLEAR ALL</td>
<td>name</td>
</tr>
<tr>
<td>C [ID]</td>
<td>ZERO</td>
<td>LOWSPAN</td>
</tr>
<tr>
<td></td>
<td>ASEQ number</td>
<td></td>
</tr>
<tr>
<td></td>
<td>COMPUTE ZERO</td>
<td>SPAN</td>
</tr>
<tr>
<td></td>
<td>EXIT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABORT</td>
<td></td>
</tr>
<tr>
<td>D [ID]</td>
<td>LIST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name[=value]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LIST NAMES</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ENTER name</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EXIT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRINT ["name"] [SCRIPT]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>RECORDS ["name"]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>REPORT ["name"] [RECORDS=number] [FROM=<start date>] [TO=<end date>] [VERBOSE</td>
<td>COMPACT</td>
</tr>
<tr>
<td></td>
<td>CANCEL</td>
<td></td>
</tr>
<tr>
<td>V [ID]</td>
<td>LIST</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name[=value [warn_low [warn_high]]]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>name="value"</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CONFIG</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MAINT ON</td>
<td>OFF</td>
</tr>
<tr>
<td></td>
<td>MODE</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DASBEGIN [<data channel definitions>] DASEND</td>
<td>Upload iDAS configuration</td>
</tr>
<tr>
<td></td>
<td>CHANNELBEGIN propertylist CHANNELEND</td>
<td>Upload single iDAS channel</td>
</tr>
<tr>
<td></td>
<td>CHANNELDELETE ["name"]</td>
<td>Delete iDAS channels</td>
</tr>
</tbody>
</table>

The command syntax follows the command type, separated by a space character. Strings in [brackets] are optional designators. The following key assignments also apply.
Table A-8: Terminal Key Assignments, Revision A.1

<table>
<thead>
<tr>
<th>TERMINAL KEY ASSIGNMENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ESC</td>
<td>Abort line</td>
</tr>
<tr>
<td>CR (ENTER)</td>
<td>Execute command</td>
</tr>
<tr>
<td>Ctrl-C</td>
<td>Switch to computer mode</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>COMPUTER MODE KEY ASSIGNMENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>LF (line feed)</td>
<td>Execute command</td>
</tr>
<tr>
<td>Ctrl-T</td>
<td>Switch to terminal mode</td>
</tr>
</tbody>
</table>
NOTE

Use of replacement parts other than those supplied by API may result in non-compliance with European standard EN 61010-1.

<table>
<thead>
<tr>
<th>PART NUMBER</th>
<th>DESCRIPTION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>000940100</td>
<td>Orifice, 3 mil, 60 cc (IZS)</td>
<td></td>
</tr>
<tr>
<td>000940800</td>
<td>Orifice, 12 mil, 650 cc, Rx Cell</td>
<td></td>
</tr>
<tr>
<td>002690000</td>
<td>Lens, UV (002-039700)</td>
<td></td>
</tr>
<tr>
<td>002700000</td>
<td>Lens, PMT (002-039800)</td>
<td></td>
</tr>
<tr>
<td>002720000</td>
<td>PMT Optical Filter (002-035300)</td>
<td></td>
</tr>
<tr>
<td>003290000</td>
<td>Thermistor Assembly (885-071600)</td>
<td></td>
</tr>
<tr>
<td>003690000</td>
<td>Filter, TFE, 37 mm, Qty. 100</td>
<td>(872-006400)</td>
</tr>
<tr>
<td>005960000</td>
<td>Activated Charcoal, 6 lbs</td>
<td></td>
</tr>
<tr>
<td>008160000</td>
<td>M100 47 mm Filter Holder</td>
<td></td>
</tr>
<tr>
<td>009690000</td>
<td>Filter, TFE, 47 mm, Qty. 100</td>
<td></td>
</tr>
<tr>
<td>009690100</td>
<td>Filter, TFE, 47 mm, Qty. 25</td>
<td></td>
</tr>
<tr>
<td>013390000</td>
<td>Kicker Assembly, M100A</td>
<td></td>
</tr>
<tr>
<td>013400000</td>
<td>PMT, H₂S</td>
<td></td>
</tr>
<tr>
<td>013420000</td>
<td>Rotary Solenoid Assembly (Shutter Solenoid)</td>
<td></td>
</tr>
<tr>
<td>013570000</td>
<td>Thermistor Assembly (Cooler)</td>
<td></td>
</tr>
<tr>
<td>014080000</td>
<td>Assembly, High Voltage Power Supply</td>
<td></td>
</tr>
<tr>
<td>014400000</td>
<td>Zero Air Scrubber for IZS</td>
<td></td>
</tr>
<tr>
<td>014610000</td>
<td>Cooler Assembly</td>
<td></td>
</tr>
<tr>
<td>024180000</td>
<td>CD, UV Filter 214 NM</td>
<td></td>
</tr>
<tr>
<td>024710000</td>
<td>Tubing: 6', 1/8" CLR</td>
<td></td>
</tr>
<tr>
<td>024720000</td>
<td>Tubing: 6', 1/8" BLK</td>
<td></td>
</tr>
<tr>
<td>024750000</td>
<td>Tubing: 6', 1/4" TYGON</td>
<td></td>
</tr>
<tr>
<td>040300100</td>
<td>115V Configuration Plug</td>
<td></td>
</tr>
<tr>
<td>041510100</td>
<td>PRESS/FLOW SEN</td>
<td></td>
</tr>
<tr>
<td>041520200</td>
<td>Module, Relay PCA & Power Supply</td>
<td></td>
</tr>
<tr>
<td>041660000</td>
<td>PCA, UV Lamp Power Supply</td>
<td></td>
</tr>
<tr>
<td>041800100</td>
<td>PCA, PMT Preamp, M6200E</td>
<td></td>
</tr>
<tr>
<td>042410200</td>
<td>Internal Pump Assy</td>
<td></td>
</tr>
<tr>
<td>045570000</td>
<td>UV Lamp Assy, M6200E</td>
<td></td>
</tr>
<tr>
<td>CH0000017</td>
<td>SOX Scrubber Material</td>
<td></td>
</tr>
<tr>
<td>FL0000001</td>
<td>Sintered Filter (002-024900)</td>
<td></td>
</tr>
<tr>
<td>FL0000003</td>
<td>Filter, DFU (036-040180)</td>
<td></td>
</tr>
<tr>
<td>PART NUMBER</td>
<td>DESCRIPTION</td>
<td>NOTES</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>FM0000004</td>
<td>Flow Meter, 0-1000 cc</td>
<td></td>
</tr>
<tr>
<td>HE0000018</td>
<td>Heater, 50W (IZS)</td>
<td></td>
</tr>
<tr>
<td>HW0000020</td>
<td>Spring, Flow Control</td>
<td></td>
</tr>
<tr>
<td>HW0000036</td>
<td>TFE Thread Tape (48 FT)</td>
<td></td>
</tr>
<tr>
<td>KIT000019</td>
<td>Replacement Cooler Assembly, M100A/M200A</td>
<td></td>
</tr>
<tr>
<td>KIT000028</td>
<td>Retrofit, 37mm Retaining Ring, Sample Filter</td>
<td></td>
</tr>
<tr>
<td>KIT000029</td>
<td>Retrofit, 47mm Retaining Ring, Sample Filter</td>
<td></td>
</tr>
<tr>
<td>OP0000012</td>
<td>UV Detector</td>
<td></td>
</tr>
<tr>
<td>OR0000001</td>
<td>O-Ring, Flow Control</td>
<td></td>
</tr>
<tr>
<td>OR0000004</td>
<td>O-Ring, Optic/Cell, Cell/Trap</td>
<td></td>
</tr>
<tr>
<td>OR0000006</td>
<td>O-Ring, Cell/PMT</td>
<td></td>
</tr>
<tr>
<td>OR0000007</td>
<td>O-Ring, PMT, Barrel, Cell</td>
<td></td>
</tr>
<tr>
<td>OR0000015</td>
<td>O-Ring, PMT Filter</td>
<td></td>
</tr>
<tr>
<td>OR0000016</td>
<td>O-Ring, UV Lens</td>
<td></td>
</tr>
<tr>
<td>OR0000025</td>
<td>O-Ring, Zero Air Scrubber</td>
<td></td>
</tr>
<tr>
<td>OR0000042</td>
<td>O-Ring, Sensor Assembly</td>
<td></td>
</tr>
<tr>
<td>OR0000046</td>
<td>O-Ring, Permeation Oven</td>
<td></td>
</tr>
<tr>
<td>SW0000006</td>
<td>Overheat SW, Cell/Oven</td>
<td></td>
</tr>
<tr>
<td>VA0000033</td>
<td>3-Way Solenoid Valve, Teflon, 12V (IZS)</td>
<td></td>
</tr>
</tbody>
</table>
Appendix C - Repair Questionnaire - M6200E

Company: _________________________ Contact Name: _____________________________
Phone Number: ___________ Fax Number: _____________ Email: ____________________
Site Address: __

Can we connect to the instrument? If so, provide IP address or modem #:___________________

Model 6200E Serial Number: ____________________ Firmware revision: _________________
The serial number can be found on the back of the instrument; the firmware revision is displayed in the upper left corner of the display when pressing SETUP on the front panel (Example: C.3).

1. List all front panel error/warning messages:

2. Please complete the following table: (Depending on options installed, not all test parameters shown below may be available in your instrument)

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>RECORDED VALUE</th>
<th>ACCEPTABLE VALUE</th>
<th>PARAMETER</th>
<th>RECORDED VALUE</th>
<th>ACCEPTABLE VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>RANGE</td>
<td>ppb/ppm</td>
<td>50 ppb - 20 ppm</td>
<td>SLOPE</td>
<td>mV</td>
<td>1.0 ± 0.3</td>
</tr>
<tr>
<td>H2S STB1</td>
<td>ppb</td>
<td>≤ 1 ppb with zero air</td>
<td>H2S OFFS1</td>
<td>mV</td>
<td>< 250</td>
</tr>
<tr>
<td>SAMP FL</td>
<td>cm³/min</td>
<td>500 ± 50</td>
<td>HVPS</td>
<td>mV</td>
<td>5500-900</td>
</tr>
<tr>
<td>PMT signal with zero air</td>
<td>mv</td>
<td>-20 to 150</td>
<td>ETTEST</td>
<td>mV</td>
<td>2000 ± 1000</td>
</tr>
<tr>
<td>PMT signal at span gas conc</td>
<td>mv</td>
<td>0-5000 0-20 000 ppb</td>
<td>OTTEST</td>
<td>mV</td>
<td>2000 ± 1000</td>
</tr>
<tr>
<td>NORM PMT at span gas conc</td>
<td>mv</td>
<td>0-5000 0-20 000 ppb</td>
<td>RCELL TEMP</td>
<td>°C</td>
<td>50 ± 1</td>
</tr>
<tr>
<td>UV LAMP</td>
<td>mv</td>
<td>2 000 to 4 000</td>
<td>BOX TEMP</td>
<td>°C</td>
<td>Ambient ± ~5</td>
</tr>
<tr>
<td>STR. LGT</td>
<td>ppm</td>
<td>≤ 100 ppb/zero air</td>
<td>PMT TEMP</td>
<td>°C</td>
<td>7 ± 2</td>
</tr>
<tr>
<td>DARK PMT</td>
<td>mv</td>
<td>-50 to 200</td>
<td>IZS TEMP</td>
<td>°C</td>
<td>50 ± 3</td>
</tr>
<tr>
<td>DARK LAMP</td>
<td>mv</td>
<td>-50 to 200</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. Has the analyzer been checked for leaks? Yes ☐ No ☐ For proper flows? Yes ☐ No ☐

4. What are the failure symptoms? ___

5. Which tests have you done trying to solve the problem? _______________________________

6. If possible, fax a portion of a strip chart or email a data file to customer service.

 CUSTOMER SERVICE CONTACT INFORMATION: 6565 Nancy Ridge Drive, San Diego, CA 92121.
 PHONE: +1 858 657 9800 or 1-800 324 5190; FAX: +1 858 657 9816. EMAIL: api-customerservice@teledyne.com.

 You can access and submit an online version of this form at http://www.teledyne-api.com/forms/csforM6200E.asp

Notes and further information: ___
Table D-1: List of Electronic Schematics

<table>
<thead>
<tr>
<th>Document #</th>
<th>Document Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>03956</td>
<td>PCA, 03955, Relay Driver</td>
</tr>
<tr>
<td>04002</td>
<td>PCA, 04003, Pressure Flow Sensor Board</td>
</tr>
<tr>
<td>04070</td>
<td>PCA, 04069, Motherboard</td>
</tr>
<tr>
<td>04181</td>
<td>PCA, 04180, PMT Preamp</td>
</tr>
<tr>
<td>04259</td>
<td>PCA, 04258, Keyboard Display Interface</td>
</tr>
<tr>
<td>04420</td>
<td>PCA, 04120, UV Detector Preamp</td>
</tr>
<tr>
<td>04693</td>
<td>PCA, 04692, UV Lamp Driver</td>
</tr>
<tr>
<td>04932</td>
<td>PCA, Thermo-Electric Cooler Board</td>
</tr>
<tr>
<td>04468</td>
<td>PCA, 04467, Analog Output Res</td>
</tr>
</tbody>
</table>
User Notes